搜索
    上传资料 赚现金
    新高考物理一轮复习精品学案第5章第2讲人造卫星宇宙速度(含解析)
    立即下载
    加入资料篮
    新高考物理一轮复习精品学案第5章第2讲人造卫星宇宙速度(含解析)01
    新高考物理一轮复习精品学案第5章第2讲人造卫星宇宙速度(含解析)02
    新高考物理一轮复习精品学案第5章第2讲人造卫星宇宙速度(含解析)03
    还剩12页未读, 继续阅读
    下载需要20学贝
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考物理一轮复习精品学案第5章第2讲人造卫星宇宙速度(含解析)

    展开
    这是一份新高考物理一轮复习精品学案第5章第2讲人造卫星宇宙速度(含解析),共15页。

    考点一 卫星运行参量的分析
    1.天体(卫星)运行问题分析
    将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.
    2.物理量随轨道半径变化的规律
    Geq \f(Mm,r2)=eq \b\lc\{\rc\ (\a\vs4\al\c1(ma→a=\f(GM,r2)→a∝\f(1,r2),m\f(v2,r)→v=\r(\f(GM,r))→v∝\f(1,\r(r)),mω2r→ω=\r(\f(GM,r3))→ω∝\f(1,\r(r3)),m\f(4π2,T2)r→T=\r(\f(4π2r3,GM))→T∝\r(r3)))
    即r越大,v、ω、a越小,T越大.(越高越慢)
    3.人造卫星
    卫星运行的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.
    (1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.
    (2)同步卫星
    ①轨道平面与赤道平面共面,且与地球自转的方向相同.
    ②周期与地球自转周期相等,T=24 h.
    ③高度固定不变,h=3.6×107 m.
    ④运行速率均为v=3.1 km/s.
    (3)近地卫星:轨道在地球表面附近的卫星,其轨道半径r=R(地球半径),运行速度等于第一宇宙速度v=7.9 km/s(人造地球卫星的最大圆轨道运行速度),T=85 min(人造地球卫星的最小周期).
    注意:近地卫星可能为极地卫星,也可能为赤道卫星.
    1.同一中心天体的两颗行星,公转半径越大,向心加速度越大.( × )
    2.同一中心天体质量不同的两颗行星,若轨道半径相同,速率不一定相同.( × )
    3.近地卫星的周期最小.( √ )
    4.地球同步卫星根据需要可以定点在北京正上空.( × )
    5.极地卫星通过地球两极,且始终和地球某一经线平面重合.( × )
    6.不同的同步卫星的质量不一定相同,但离地面的高度是相同的.( √ )
    1.公式中r指轨道半径,是卫星到中心天体球心的距离,R通常指中心天体的半径,有r=R+h.
    2.同一中心天体,各行星v、ω、a、T等物理量只与r有关;不同中心天体,各行星v、ω、a、T等物理量与中心天体质量M和r有关.
    考向1 卫星运行参量与轨道半径的关系
    例1 (2020·浙江7月选考·7)火星探测任务“天问一号”的标识如图所示.若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )
    A.轨道周长之比为2∶3
    B.线速度大小之比为eq \r(3)∶eq \r(2)
    C.角速度大小之比为2eq \r(2)∶3eq \r(3)
    D.向心加速度大小之比为9∶4
    答案 C
    解析 轨道周长C=2πr,与半径成正比,故轨道周长之比为3∶2,故A错误;根据万有引力提供向心力有eq \f(GMm,r2)=meq \f(v2,r),得v=eq \r(\f(GM,r)),得eq \f(v火,v地)=eq \r(\f(r地,r火))=eq \f(\r(2),\r(3)),故B错误;由万有引力提供向心力有eq \f(GMm,r2)=mω2r,得ω=eq \r(\f(GM,r3)),得eq \f(ω火,ω地)=eq \r(\f(r地3,r火3))=eq \f(2\r(2),3\r(3)),故C正确;由eq \f(GMm,r2)=ma,得a=eq \f(GM,r2),得eq \f(a火,a地)=eq \f(r地2,r火2)=eq \f(4,9),故D错误.
    例2 (多选)(2020·江苏卷·7改编)甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍.下列应用公式进行的推论正确的有( )
    A.由v=eq \r(gr)可知,甲的速度是乙的eq \r(2)倍
    B.由a=ω2r可知,甲的向心加速度是乙的2倍
    C.由F=Geq \f(Mm,r2)可知,甲的向心力是乙的eq \f(1,4)
    D.由eq \f(r3,T2)=k可知,甲的周期是乙的2eq \r(2)倍
    答案 CD
    解析 人造卫星绕地球做圆周运动时有Geq \f(Mm,r2)=meq \f(v2,r),即v=eq \r(\f(GM,r)),因此甲的速度是乙的eq \f(\r(2),2)倍,故A错误;由Geq \f(Mm,r2)=ma得a=eq \f(GM,r2),故甲的向心加速度是乙的eq \f(1,4),故B错误;由F=Geq \f(Mm,r2)知甲的向心力是乙的eq \f(1,4),故C正确;由开普勒第三定律eq \f(r3,T2)=k,绕同一天体运动,k值不变,可知甲的周期是乙的2eq \r(2)倍,故D正确.
    考向2 同步卫星、近地卫星和赤道上物体
    例3 关于地球同步卫星,下列说法错误的是( )
    A.它的周期与地球自转周期相同
    B.它的周期、高度、速度大小都是一定的
    C.我国发射的同步通讯卫星可以定点在北京上空
    D.我国发射的同步通讯卫星必须定点在赤道上空
    答案 C
    解析 地球同步卫星的周期与地球自转周期相同,选项A正确;根据Geq \f(Mm,r2)=meq \f(v2,r)=meq \f(4π2,T2)r可知,因地球同步卫星的周期一定,则高度、速度大小都是一定的,选项B正确;我国发射的同步通讯卫星若在除赤道所在平面外的任意点,假设实现了“同步”,那它的运动轨道所在平面与受到地球的引力就不在一个平面上,这是不可能的,因此同步卫星必须定点在赤道上空,不可以定点在北京上空,故C错误,D正确.
    例4 (多选)如图所示,卫星a没有发射,停放在地球的赤道上随地球自转;卫星b发射成功,在地球赤道上空贴着地表做匀速圆周运动;两卫星的质量相等.认为重力近似等于万有引力.下列说法正确的是( )
    A.a、b做匀速圆周运动所需的向心力大小相等
    B.b做匀速圆周运动的向心加速度等于重力加速度g
    C.a、b做匀速圆周运动的线速度大小相等,都等于第一宇宙速度
    D.a做匀速圆周运动的周期等于地球同步卫星的周期
    答案 BD
    解析 两卫星的质量相等,到地心的距离相等,所以受到地球的万有引力相等.卫星a在赤道上随地球自转而做圆周运动,万有引力的一部分提供自转的向心力,卫星b在赤道上空贴着地表做匀速圆周运动,万有引力全部用来提供公转的向心力,因此a、b做匀速圆周运动所需的向心力大小不相等,A项错误;对卫星b,重力近似等于万有引力,万有引力全部用来提供向心力,所以向心加速度等于重力加速度g,B项正确;卫星b在赤道上空贴着地表做匀速圆周运动,其速度就是最大的环绕速度,也是第一宇宙速度,卫星a在赤道上随地球自转而做圆周运动,向心力小于卫星b的向心力,根据牛顿第二定律,卫星a的线速度小于b的线速度,即a的线速度小于第一宇宙速度,C项错误;a在赤道上随地球自转而做圆周运动,自转周期等于地球的自转周期,同步卫星的周期也等于地球的自转周期,所以a做匀速圆周运动的周期等于地球同步卫星的周期,D项正确.
    例5 (多选)如图所示,卫星a、b、c沿圆形轨道绕地球运行.a是极地轨道卫星,在地球两极上空约1 000 km处运行;b是低轨道卫星,距地球表面高度与a相等;c是地球同步卫星,则( )
    A.a、b的周期比c大
    B.a、b的向心力大小一定相等
    C.a、b的线速度大小相等
    D.a、b的向心加速度比c大
    答案 CD
    解析 卫星绕地球做匀速圆周运动,万有引力提供向心力,eq \f(GMm,r2)=meq \f(4π2,T2)r=meq \f(v2,r)=ma,解得T=2πeq \r(\f(r3,GM)),v=eq \r(\f(GM,r)),a=eq \f(GM,r2),a、b卫星的轨道半径相等,则周期相等,线速度大小相等,方向不同,向心加速度大小相等,c卫星的轨道半径大于a、b卫星的轨道半径,则c卫星的向心加速度小于a、b的向心加速度,周期大于a、b的周期,故A错误,C、D正确;卫星的质量未知,无法比较向心力的大小,故B错误.
    例6 (多选)地球同步卫星离地心的距离为r,运行速率为v1,向心加速度大小为a1,地球赤道上的物体随地球自转的向心加速度大小为a2,地球的第一宇宙速度为v2,地球半径为R.则下列关系式正确的是( )
    A.eq \f(a1,a2)=eq \f(r2,R2) B.eq \f(a1,a2)=eq \f(r,R) C.eq \f(v1,v2)=eq \r(\f(R,r)) D.eq \f(v1,v2)=eq \f(r,R)
    答案 BC
    解析 因为地球同步卫星的角速度和地球赤道上的物体随地球自转的角速度相同,根据公式a=ω2r,则有eq \f(a1,a2)=eq \f(r,R),故A错误,B正确;对于地球同步卫星和以第一宇宙速度运动的近地卫星,由万有引力提供做匀速圆周运动所需向心力得到meq \f(v2,r)=eq \f(GM,r2)m,所以eq \f(v1,v2)=eq \r(\f(R,r)),故C正确,D错误.
    同步卫星、近地卫星及赤道上物体的比较
    如图所示,a为近地卫星,轨道半径为r1;b为地球同步卫星,轨道半径为r2;c为赤道上随地球自转的物体,轨道半径为r3.
    考点二 宇宙速度
    1.地球的第一宇宙速度的大小与地球质量有关.( √ )
    2.月球的第一宇宙速度也是7.9 km/s.( × )
    3.同步卫星的运行速度一定小于地球第一宇宙速度.( √ )
    4.若物体的发射速度大于第二宇宙速度而小于第三宇宙速度,则物体绕太阳运行.( √ )
    1.第一宇宙速度的推导
    方法一:由Geq \f(Mm,R2)=meq \f(v12,R),得v1=eq \r(\f(GM,R))=eq \r(\f(6.67×10-11×5.98×1024,6.4×106)) m/s≈7.9×103 m/s.
    方法二:由mg=meq \f(v12,R)得
    v1=eq \r(gR)=eq \r(9.8×6.4×106) m/s≈7.9×103 m/s.
    第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,Tmin=2πeq \r(\f(R,g))=2πeq \r(\f(6.4×106,9.8)) s≈5 075 s≈85 min.
    2.宇宙速度与运动轨迹的关系
    (1)v发=7.9 km/s时,卫星绕地球表面做匀速圆周运动.
    (2)7.9 km/s(3)11.2 km/s≤v发<16.7 km/s,卫星绕太阳运动的轨迹为椭圆.
    (4)v发≥16.7 km/s,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.
    例7 地球的近地卫星线速度大小约为8 km/s,已知月球质量约为地球质量的eq \f(1,81),地球半径约为月球半径的4倍,下列说法正确的是( )
    A.在月球上发射卫星的最小速度约为8 km/s
    B.月球卫星的环绕速度可能达到4 km/s
    C.月球的第一宇宙速度约为1.8 km/s
    D.“近月卫星”的线速度比“近地卫星”的线速度大
    答案 C
    解析 根据第一宇宙速度v=eq \r(\f(GM,R)),月球与地球的第一宇宙速度之比为eq \f(v2,v1)=eq \r(\f(M2R1,M1R2))=eq \r(\f(4,81))=eq \f(2,9),月球的第一宇宙速度约为v2=eq \f(2,9)v1=eq \f(2,9)×8 km/s≈1.8 km/s,在月球上发射卫星的最小速度约为1.8 km/s,月球卫星的环绕速度小于或等于1.8 km/s,“近月卫星”的速度为1.8 km/s,小于“近地卫星”的速度,故C正确.
    例8 (2020·北京卷·5)我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )
    A.火星探测器的发射速度应大于地球的第二宇宙速度
    B.火星探测器的发射速度应介于地球的第一和第二宇宙速度之间
    C.火星的第一宇宙速度大于地球的第一宇宙速度
    D.火星表面的重力加速度大于地球表面的重力加速度
    答案 A
    解析 火星探测器需要脱离地球的束缚,故其发射速度应大于地球的第二宇宙速度,故A正确,B错误;由Geq \f(Mm,R2)=meq \f(v2,R)得,v火=eq \r(\f(GM火,R火))=eq \r(\f(0.1M地G,0.5R地))=eq \f(\r(5),5)v地,故火星的第一宇宙速度小于地球的第一宇宙速度,故C错误;由eq \f(GMm,R2)=mg得,
    g火=Geq \f(M火,R火2)=Geq \f(0.1M地,0.5R地2)=0.4g地,故火星表面的重力加速度小于地球表面的重力加速度,故D错误.
    例9 宇航员在一行星上以速度v0竖直上抛一质量为m的物体,不计空气阻力,经2t后落回手中,已知该星球半径为R.求:
    (1)该星球的第一宇宙速度的大小;
    (2)该星球的第二宇宙速度的大小.已知取无穷远处引力势能为零,物体距星球球心距离为r时的引力势能Ep=-Geq \f(mM,r).(G为引力常量)
    答案 (1)eq \r(\f(v0R,t)) (2)eq \r(\f(2v0R,t))
    解析 (1)由题意可知星球表面重力加速度为
    g=eq \f(v0,t)
    由万有引力定律知mg=meq \f(v12,R)
    解得v1=eq \r(gR)=eq \r(\f(v0R,t)).
    (2)由星球表面万有引力等于物体重力知
    eq \f(GMm,R2)=mg
    又Ep=-Geq \f(mM,R)
    解得Ep=-eq \f(mv0R,t)
    由机械能守恒定律有eq \f(1,2)mv22-eq \f(mv0R,t)=0
    解得v2=eq \r(\f(2v0R,t)).
    考点三 天体的“追及”问题
    天体“相遇”指两天体相距最近,以地球和行星“相遇”为例(“行星冲日”),某时刻行星与地球最近,此时行星、地球与太阳三者共线且行星和地球的运转方向相同(图甲),根据eq \f(GMm,r2)=mω2r可知,地球公转的速度较快,从初始时刻到之后“相遇”,地球与行星距离最小,三者再次共线,有两种方法可以解决问题:
    1.角度关系
    ω1t-ω2t=n·2π(n=1、2、3…)
    2.圈数关系
    eq \f(t,T1)-eq \f(t,T2)=n(n=1、2、3…)
    解得t=eq \f(nT1T2,T2-T1)(n=1、2、3…)
    同理,若两者相距最远(行星处在地球和太阳的延长线上)(图乙),有关系式:ω1t-ω2t=(2n-1)π(n=1、2、3…)或eq \f(t,T1)-eq \f(t,T2)=eq \f(2n-1,2)(n=1、2、3…)
    例10 当地球位于太阳和木星之间且三者几乎排成一条直线时,称之为“木星冲日”,若2022年9月26日出现一次“木星冲日”.已知木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍.则下列说法正确的是( )
    A.下一次的“木星冲日”时间肯定在2024年
    B.下一次的“木星冲日”时间肯定在2023年
    C.木星运行的加速度比地球的大
    D.木星运行的周期比地球的小
    答案 B
    解析 设太阳质量为M,行星质量为m,轨道半径为r,周期为T,加速度为a.对行星由牛顿第二定律可得Geq \f(Mm,r2)=ma=meq \f(4π2,T2)r,解得a=eq \f(GM,r2),T=2πeq \r(\f(r3,GM)),由于木星到太阳的距离大约是地球到太阳距离的5倍,因此,木星运行的加速度比地球的小,木星运行的周期比地球的大,故C、D错误;地球
    公转周期T1=1年,由T=2πeq \r(\f(r3,GM))可知,木星公转周期T2=eq \r(125)T1≈11.2年.设经时间t,再次出现“木星冲日”,则有ω1t-ω2t=2π,其中ω1=eq \f(2π,T1),ω2=eq \f(2π,T2),解得t≈1.1年,因此下一次“木星冲日”发生在2023年,故A错误,B正确.
    例11 (多选)如图,在万有引力作用下,a、b两卫星在同一平面内绕某一行星c沿逆时针方向做匀速圆周运动,已知轨道半径之比为ra∶rb=1∶4,则下列说法中正确的有( )
    A.a、b运动的周期之比为Ta∶Tb=1∶8
    B.a、b运动的周期之比为Ta∶Tb=1∶4
    C.从图示位置开始,在b转动一周的过程中,a、b、c共线12次
    D.从图示位置开始,在b转动一周的过程中,a、b、c共线14次
    答案 AD
    解析 根据开普勒第三定律:半径的三次方与周期的二次方成正比,则a、b运动的周期之比为1∶8,A对,B错;设题图所示位置ac连线与bc连线的夹角为θ(π-θ)+n·2π(n=0,1,2,3…),可知n=0,1,2,…,6,n可取7个值;a、b相距最近时:eq \f(2π,Ta)Tb-eq \f(2π,Tb)Tb>(2π-θ)+m·2π(m=0,1,2,3…),可知m=0,1,2,…6,m可取7个值,故在b转动一周的过程中,a、b、c共线14次,C错,D对.
    课时精练
    1.a、b两颗地球卫星做圆周运动,两颗卫星轨道半径关系为2ra=rb,则下列分析正确的是( )
    A.a、b两卫星的圆轨道的圆心可以与地心不重合
    B.a、b两卫星的运动周期之比为1∶2
    C.地球对a卫星的引力大于对b卫星的引力
    D.a、b两卫星线速度的平方之比为2∶1
    答案 D
    解析 卫星由万有引力提供向心力,a、b两卫星的圆轨道的圆心一定与地心重合,故A错误;根据万有引力提供向心力得Geq \f(Mm,r2)=meq \f(4π2r,T2),T=eq \r(\f(4π2r3,GM)),由于ra∶rb=1∶2,可得Ta∶Tb=1∶2eq \r(2),故B错误;由于不知道卫星质量,无法判断引力大小,故C错误;根据万有引力提供向心力得Geq \f(Mm,r2)=meq \f(v2,r),v2=eq \f(GM,r),由于ra∶rb=1∶2,可得va2∶vb2=2∶1,故D正确.
    2.(2019·天津卷·1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图.已知月球的质量为M、半径为R,探测器的质量为m,引力常量为G,嫦娥四号探测器围绕月球做半径为r的匀速圆周运动时,探测器的( )
    A.周期为eq \r(\f(4π2r3,GM)) B.动能为eq \f(GMm,2R)
    C.角速度为eq \r(\f(Gm,r3)) D.向心加速度为eq \f(GM,R2)
    答案 A
    解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,由eq \f(GMm,r2)=mω2r=meq \f(v2,r)=meq \f(4π2,T2)r=ma,解得ω=eq \r(\f(GM,r3))、v=eq \r(\f(GM,r))、T=eq \r(\f(4π2r3,GM))、a=eq \f(GM,r2),则嫦娥四号探测器的动能为Ek=eq \f(1,2)mv2=eq \f(GMm,2r),由以上可知A正确,B、C、D错误.
    3.我国首颗量子科学实验卫星“墨子”已于酒泉卫星发射中心成功发射.“墨子”由火箭发射至高度为500 km的预定圆形轨道.此前在西昌卫星发射中心成功发射了第二十三颗北斗导航卫星G7,G7属于地球静止轨道卫星(高度约为36 000 km),它将使北斗系统的可靠性进一步提高.关于卫星以下说法中正确的是( )
    A.这两颗卫星的运行速度可能大于7.9 km/s
    B.通过地面控制可以将北斗G7定点于西昌正上方
    C.量子科学实验卫星“墨子”的周期比北斗G7的周期小
    D.量子科学实验卫星“墨子”的向心加速度比北斗G7的小
    答案 C
    解析 根据Geq \f(Mm,r2)=meq \f(v2,r),得v=eq \r(\f(GM,r))知轨道半径越大,线速度越小,北斗G7和量子科学实验卫星“墨子”的线速度均小于地球的第一宇宙速度,故A错误;北斗G7即同步卫星,只能定点于赤道正上方,故B错误;根据Geq \f(Mm,r2)=meq \f(4π2,T2)r,得T=eq \r(\f(4π2r3,GM)),所以量子科学实验卫星“墨子”的周期小,故C正确;卫星的向心加速度a=eq \f(GM,r2),半径小的量子科学实验卫星“墨子”的向心加速度比北斗G7的大,故D错误.
    4.如图,甲、乙两颗卫星以相同的轨道半径分别绕质量为M和2M的行星做匀速圆周运动.下列说法正确的是( )
    A.甲的向心加速度比乙的小
    B.甲的运行周期比乙的小
    C.甲的角速度比乙的大
    D.甲的线速度比乙的大
    答案 A
    解析 根据Geq \f(Mm,r2)=ma可得a=Geq \f(M,r2),则a1∶a2=1∶2,故A正确;根据公式Geq \f(Mm,r2)=meq \f(4π2r,T2)可得T=2πeq \r(\f(r3,GM)),则T1∶T2=eq \r(2)∶1,故B错误;根据公式Geq \f(Mm,r2)=mω2r可得ω=eq \r(\f(GM,r3)),则ω1∶ω2=1∶eq \r(2),故C错误;根据Geq \f(Mm,r2)=meq \f(v2,r),可得v=eq \r(\f(GM,r)),则v1∶v2=1∶eq \r(2),故D错误.
    5.(2020·全国卷Ⅱ·15)若一均匀球形星体的密度为ρ,引力常量为G,则在该星体表面附近沿圆轨道绕其运动的卫星的周期是( )
    A.eq \r(\f(3π,Gρ)) B.eq \r(\f(4π,Gρ)) C.eq \r(\f(1,3πGρ)) D.eq \r(\f(1,4πGρ))
    答案 A
    解析 根据卫星受到的万有引力提供其做圆周运动的向心力可得Geq \f(Mm,R2)=m(eq \f(2π,T))2R,球形星体质量可表示为:M=ρ·eq \f(4,3)πR3,由以上两式可得:T=eq \r(\f(3π,Gρ)),A正确.
    6.如图所示,我国空间站核心舱“天和”在离地高度约为h=400 km的圆轨道上运行期间,聂海胜等三名宇航员在轨工作.假设“天和”做匀速圆周运动,地球半径R=6 400 km,引力常量为G,则可知( )
    A.“天和”核心舱内的宇航员不受地球引力作用
    B.聂海胜在轨观看苏炳添东奥百米决赛比赛时间段内飞行路程可能超过79 km
    C.考虑到h远小于R,聂海胜可以记录连续两次经过北京上空的时间间隔T,利用公式ρ=eq \f(3π,GT2)估算地球密度
    D.“天和”核心舱轨道平面内可能存在一颗与地球自转周期相同的地球卫星
    答案 D
    解析 “天和”核心舱内的宇航员仍受到地球引力的作用,故A错误;由公式Geq \f(Mm,R2)=meq \f(v2,R),得贴近地球表面飞行的卫星的线速度v=eq \r(\f(GM,R))=7.9 km/s,“天和”号运行的线速度v1=eq \r(\f(GM,R+h))7.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v2与第一宇宙速度v1的关系是v2=eq \r(2)v1.已知某星球的半径为r,它表面的重力加速度为地球表面重力加速度g的eq \f(1,6).不计其他星球的影响.则该星球的第二宇宙速度为( )
    A.eq \r(\f(gr,3)) B.eq \r(\f(gr,6)) C.eq \f(gr,3) D.eq \r(gr)
    答案 A
    解析 该星球的第一宇宙速度满足:Geq \f(Mm,r2)=meq \f(v12,r),在该星球表面处万有引力等于重力:Geq \f(Mm,r2)=meq \f(g,6),由以上两式得该星球的第一宇宙速度v1=eq \r(\f(gr,6)),则第二宇宙速度v2=eq \r(2)×eq \r(\f(gr,6))=eq \r(\f(gr,3)),故A正确.
    8.两颗人造卫星A、B绕地球做匀速圆周运动,周期之比为TA∶TB=8∶1,则( )
    A.轨道半径之比rA∶rB=4∶1
    B.线速度之比vA∶vB=2∶1
    C.角速度之比ωA∶ωB=1∶4
    D.向心加速度之比aA∶aB=1∶4
    答案 A
    解析 根据万有引力提供向心力,有Geq \f(Mm,r2)=meq \f(v2,r)=meq \f(4π2,T2)r=mω2r=ma,解得r=eq \r(3,\f(GMT2,4π2)),v=eq \r(\f(GM,r)),ω=eq \r(\f(GM,r3)),a=eq \f(GM,r2),依题意,可得rA∶rB=4∶1,vA∶vB=1∶2,ωA∶ωB=1∶8,aA∶aB=1∶16,故选A.
    9.利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )
    A.1 h B.4 h C.8 h D.16 h
    答案 B
    解析 地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由开普勒第三定律eq \f(r3,T2)=k可知卫星离地球的高度应变小,要实现三颗卫星覆盖全球的目的,则卫星周期最小时,由几何关系可作出卫星间的位置关系如图所示.
    卫星的轨道半径为r=eq \f(R,sin 30°)=2R
    由eq \f(r13,T12)=eq \f(r23,T22)得
    eq \f(6.6R3,242)=eq \f(2R3,T22)
    解得T2≈4 h.
    10.如图所示,A、B为地球的两个轨道共面的人造卫星,运行方向相同,A为地球同步卫星,A、B卫星的轨道半径的比值为k,地球自转周期为T0.某时刻A、B两卫星距离达到最近,从该时刻起到A、B间距离最远所经历的最短时间为( )
    A.eq \f(T0,2\r(k3)+1) B.eq \f(T0,\r(k3)-1)
    C.eq \f(T2,2\r(k3)-1) D.eq \f(T0,\r(k3)+1)
    答案 C
    解析 由开普勒第三定律得eq \f(rA3,TA2)=eq \f(rB3,TB2),设两卫星至少经过时间t距离最远,即B比A多转半圈,eq \f(t,TB)-eq \f(t,TA)=nB-nA=eq \f(1,2),又由A是地球同步卫星知TA=T0,解得t=eq \f(T0,2\r(k3)-1).故选C.
    11.(多选)地月系统是双星模型,为了寻找航天器相对地球和月球不动的位置,科学家们做出了不懈努力.如图所示,欧拉推导出L1、L2、L3三个位置,拉格朗日又推导出L4、L5两个位置.现在科学家把L1、L2、L3、L4、L5统称地月系中的拉格朗日点.中国“嫦娥四号”探测器成功登陆月球背面,并通过处于拉格朗日区的“嫦娥四号”中继卫星“鹊桥”把信息返回地球,引起众多师生对拉格朗日点的热议.下列说法正确的是( )
    A.在拉格朗日点航天器的受力不再遵循万有引力定律
    B.在不同的拉格朗日点航天器随地月系统运动的周期均相同
    C.“嫦娥四号”中继卫星“鹊桥”应选择L1点开展工程任务实验
    D.“嫦娥四号”中继卫星“鹊桥”应选择L2点开展工程任务实验
    答案 BD
    解析 在拉格朗日点的航天器仍然受万有引力,仍遵循万有引力定律,A错误;因在拉格朗日点的航天器相对地球和月球的位置不变,说明它们的角速度一样,因此周期也一样,B正确;“嫦娥四号”探测器登陆的是月球的背面,“鹊桥”要把探测器在月球背面采集的信息传回地球,L2在月球的背面,因此应选在L2点开展工程任务实验,所以C错误,D正确.
    12.(多选)假设在赤道平面内有一颗侦察卫星绕地球做匀速圆周运动,某一时刻恰好处在一颗同步卫星的正下方.已知地球半径为R,同步卫星的离地高度h1=5.6R,侦察卫星的离地高度h2=0.65R,则有( )
    A.同步卫星和侦察卫星的线速度之比为2∶1
    B.同步卫星和侦察卫星的周期之比为8∶1
    C.再经过eq \f(6,7) h两颗卫星距离最远
    D.再经过eq \f(12,7) h两颗卫星距离最远
    答案 BD
    解析 同步卫星距地心r1=R+h1=6.6R,侦察卫星距地心r2=R+h2=1.65R,设地球质量为M,两卫星质量分别为m1、m2,根据万有引力提供向心Geq \f(Mm,r2)=meq \f(v2,r),得v=eq \r(\f(GM,r)),代入卫星到地心的距离可得eq \f(v同步,v侦察)=eq \r(\f(r2,r1))=eq \f(1,2),则同步卫星和侦察卫星的线速度之比为1∶2,故A错误;根据万有引力提供向
    心力Geq \f(Mm,r2)=mω2r,得ω=eq \r(\f(GM,r3)),代入卫星到地心的距离可得eq \f(ω同步,ω侦察)=eq \r(\f(r23,r13))=eq \f(1,8),根据T=eq \f(2π,ω),得同步卫星和侦察卫星的周期之比为8∶1,故B正确;同步卫星T同步=24 h,由T同步∶T侦察=8∶1,知T侦查=3 h,当两颗卫星相距最远时,两星转过的角度应相差θ1=π+2nπ(n=0,1,2…),且满足θ1=(eq \f(2π,T侦察)-eq \f(2π,T同步))t,解得t=(eq \f(12,7)+eq \f(24,7)n) h(n=0,1,2…),当n=0时,t=eq \f(12,7) h,故C错误,D正确.比较项目
    近地卫星
    (r1、ω1、v1、a1)
    同步卫星
    (r2、ω2、v2、a2)
    赤道上随地球自转的物体
    (r3、ω3、v3、a3)
    向心力
    万有引力
    万有引力
    万有引力的一个分力
    轨道半径
    r2>r1=r3
    角速度
    ω1>ω2=ω3
    线速度
    v1>v2>v3
    向心加速度
    a1>a2>a3
    第一宇宙速度(环绕速度)
    v1=7.9 km/s,是物体在地面附近绕地球做匀速圆周运动的最大环绕速度,也是人造地球卫星的最小发射速度
    第二宇宙速度(逃逸速度)
    v2=11.2 km/s,是物体挣脱地球引力束缚的最小发射速度
    第三宇宙速度
    v3=16.7 km/s,是物体挣脱太阳引力束缚的最小发射速度
    相关学案

    新高考物理一轮复习精品学案第16章第2讲原子核(含解析): 这是一份新高考物理一轮复习精品学案第16章第2讲原子核(含解析),共12页。

    新高考物理一轮复习精品学案第13章第2讲机械波(含解析): 这是一份新高考物理一轮复习精品学案第13章第2讲机械波(含解析),共17页。

    新高考物理一轮复习精品学案第4章第2讲抛体运动(含解析): 这是一份新高考物理一轮复习精品学案第4章第2讲抛体运动(含解析),共17页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:0份资料
    • 充值学贝下载 90%的用户选择 本单免费
    • 扫码直接下载
    选择教习网的 4 个理由
    • 更专业

      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿

    • 更丰富

      涵盖课件/教案/试卷/素材等各种教学资源;500万+优选资源 ⽇更新5000+

    • 更便捷

      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤

    • 真低价

      超⾼性价⽐, 让优质资源普惠更多师⽣

    开票申请 联系客服
    本次下载需要:0学贝 0学贝 账户剩余:0学贝
    本次下载需要:0学贝 原价:0学贝 账户剩余:0学贝
    了解VIP特权
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送

        扫码支付后直接下载

        0元

        扫码支付后直接下载

        使用学贝下载资料比扫码直接下载优惠50%
        充值学贝下载,本次下载免费
        了解VIP特权
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付(支持花呗)

        到账0学贝
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付 (支持花呗)

          下载成功

          Ctrl + Shift + J 查看文件保存位置

          若下载不成功,可重新下载,或查看 资料下载帮助

          本资源来自成套资源

          更多精品资料

          正在打包资料,请稍候…

          预计需要约10秒钟,请勿关闭页面

          服务器繁忙,打包失败

          请联系右侧的在线客服解决

          单次下载文件已超2GB,请分批下载

          请单份下载或分批下载

          支付后60天内可免费重复下载

          我知道了
          正在提交订单

          欢迎来到教习网

          • 900万优选资源,让备课更轻松
          • 600万优选试题,支持自由组卷
          • 高质量可编辑,日均更新2000+
          • 百万教师选择,专业更值得信赖
          微信扫码注册
          qrcode
          二维码已过期
          刷新

          微信扫码,快速注册

          还可免费领教师专享福利「樊登读书VIP」

          手机号注册
          手机号码

          手机号格式错误

          手机验证码 获取验证码

          手机验证码已经成功发送,5分钟内有效

          设置密码

          6-20个字符,数字、字母或符号

          注册即视为同意教习网「注册协议」「隐私条款」
          QQ注册
          手机号注册
          微信注册

          注册成功

          下载确认

          下载需要:0 张下载券

          账户可用:0 张下载券

          立即下载

          如何免费获得下载券?

          加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

          即将下载

          新高考物理一轮复习精品学案第5章第2讲人造卫星宇宙速度(含解析)

          该资料来自成套资源,打包下载更省心

          [共10份]
          浏览全套
            立即下载(共1份)
            返回
            顶部