搜索
    上传资料 赚现金
    专题30函数与几何综合问题(共30题)-2020年中考数学真题分项汇编(解析版)【全国通用】
    立即下载
    加入资料篮
    专题30函数与几何综合问题(共30题)-2020年中考数学真题分项汇编(解析版)【全国通用】01
    专题30函数与几何综合问题(共30题)-2020年中考数学真题分项汇编(解析版)【全国通用】02
    专题30函数与几何综合问题(共30题)-2020年中考数学真题分项汇编(解析版)【全国通用】03
    还剩57页未读, 继续阅读
    下载需要10学贝
    使用下载券免费下载
    加入资料篮
    立即下载

    专题30函数与几何综合问题(共30题)-2020年中考数学真题分项汇编(解析版)【全国通用】

    展开
    这是一份专题30函数与几何综合问题(共30题)-2020年中考数学真题分项汇编(解析版)【全国通用】,共60页。

    2020年中考数学真题分项汇编(全国通用)
    专题30函数与几何综合问题【共30题】
    一.解答题(共30小题)
    1.(2020•扬州)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
    (1)当n=1时.
    ①求线段AB所在直线的函数表达式.
    ②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
    (2)若小明的说法完全正确,求n的取值范围.

    【分析】(1)①把n=1代入确定出B的坐标,利用待定系数法求出线段AB所在直线的解析式即可;
    ②若n=1,完全同意小明的说法,求出正确k的最大值与最小值即可;
    (2)若小明的说法完全正确,把A与B坐标代入反比例解析式,并列出不等式,求出解集即可确定出n的范围.
    【解析】(1)①当n=1时,B(5,1),
    设线段AB所在直线的函数表达式为y=kx+b,
    把A(1,2)和B(5,1)代入得:k+b=25k+b=1,
    解得:k=-14b=94,
    则线段AB所在直线的函数表达式为y=-14x+94;
    ②不完全同意小明的说法,理由为:
    k=xy=x(-14x+94)=-14(x-92)2+8116,
    ∵1≤x≤5,
    ∴当x=1时,kmin=2;
    当x=92时,kmax=8116,
    则不完全同意;
    (2)当n=2时,A(1,2),B(5,2),符合;
    当n≠2时,y=n-24x+10-n4,
    k=x(n-24x+10-n4)=n-24(x-n-102n-4)2+(10-n)216(2-n),
    先增大当x取92时,k为8116,为最大,到B为5时减小,
    即在直线上A到x=92时增大,到5时减小,
    当92<x≤5时,k在减小,
    当n<2时,k随x的增大而增大,则有n-102n-4≥5,
    此时109≤n<2;
    当n>2时,k随x的增大而增大,则有n-102n-4≤1,
    此时n>2,
    综上,n≥109.
    2.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.
    (1)用含x的代数式表示AD的长;
    (2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.

    【分析】(1)由平行线分线段成比例定理,用x表示CD,进而求得结果;
    (2)根据三角形的面积公式列出函数解析式,再根据函数性质求出S随x增大而减小时x的取值范围.
    【解析】(1)∵PD∥AB,
    ∴CPCB=CDCA,
    ∵AC=3,BC=4,CP=x,
    ∴x4=CD3,
    ∴CD=34x,
    ∴AD=AC﹣CD=3-34x,
    即AD=-34x+3;

    (2)根据题意得,S=12AD⋅CP=12x(-34x+3)=-38(x-2)2+32,
    ∴当x≥2时,S随x的增大而减小,
    ∵0<x<4,
    ∴当S随x增大而减小时x的取值范围为2≤x<4.
    3.(2020•滨州)如图,在平面直角坐标系中,直线y=-12x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.
    (1)求交点P的坐标;
    (2)求△PAB的面积;
    (3)请把图象中直线y=﹣2x+2在直线y=-12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.

    【分析】(1)解析式联立,解方程组即可求得交点P的坐标;
    (2)求得A、B的坐标,然后根据三角形面积公式求得即可;
    (3)根据图象求得即可.
    【解析】(1)由y=-12x-1y=-2x+2解得x=2y=-2,
    ∴P(2,﹣2);
    (2)直线y=-12x﹣1与直线y=﹣2x+2中,令y=0,则-12x﹣1=0与﹣2x+2=0,
    解得x=﹣2与x=1,
    ∴A(﹣2,0),B(1,0),
    ∴AB=3,
    ∴S△PAB=12AB⋅|yP|=12×3×2=3;
    (3)如图所示:

    自变量x的取值范围是x<2.
    4.(2020•襄阳)如图,反比例函数y1=mx(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).
    (1)m= 4 ,n= 2 ;
    (2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;
    (3)若点P是反比例函数y1=mx(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为 2 .

    【分析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标;
    (2)分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;根据图象求得y1<y2时x的取值范围;
    (3)根据反比例函数系数k的几何意义即可求得.
    【解析】(1)∵把A(1,4)代入y1=mx(x>0)得:m=1×4=4,
    ∴y=4x,
    ∵把B(n,2)代入y=4x得:2=4n,
    解得n=2;
    故答案为4,2;
    (2)把A(1,4)、B(2,2)代入y2=kx+b得:k+b=42k+b=2,
    解得:k=﹣2,b=6,
    即一次函数的解析式是y=﹣2x+6.
    由图象可知:y1<y2时x的取值范围是1<x<2;
    (3)∵点P是反比例函数y1=mx(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,
    ∴S△POM=12|m|=12×4=2,
    故答案为2.
    5.(2020•连云港)如图,在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(4,32),点B在y轴的负半轴上,AB交x轴于点C,C为线段AB的中点.
    (1)m= 6 ,点C的坐标为 (2,0) ;
    (2)若点D为线段AB上的一个动点,过点D作DE∥y轴,交反比例函数图象于点E,求△ODE面积的最大值.

    【分析】(1)根据待定系数法即可求得m的值,根据A点的坐标即可求得C的坐标;
    (2)根据待定系数法求得直线AB的解析式,设出D、E的坐标,然后根据三角形面积公式得到S△ODE=-38(x﹣1)2+278,由二次函数的性质即可求得结论.
    【解析】(1)∵反比例函数y=mx(x>0)的图象经过点A(4,32),
    ∴m=4×32=6,
    ∵AB交x轴于点C,C为线段AB的中点.
    ∴C(2,0);
    故答案为6,(2,0);
    (2)设直线AB的解析式为y=kx+b,
    把A(4,32),C(2,0)代入得4k+b=322k+b=0,解得k=34b=-32,
    ∴直线AB的解析式为y=34x-32;
    ∵点D为线段AB上的一个动点,
    ∴设D(x,34x-32)(0<x≤4),
    ∵DE∥y轴,
    ∴E(x,6x),
    ∴S△ODE=12x•(6x-34x+32)=-38x2+34x+3=-38(x﹣1)2+278,
    ∴当x=1时,△ODE的面积的最大值为278.
    6.(2020•遂宁)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═kx(k≠0)于D、E两点,连结CE,交x轴于点F.
    (1)求双曲线y=kx(k≠0)和直线DE的解析式.
    (2)求△DEC的面积.

    【分析】(1)作DM⊥y轴于M,通过证得△AOB≌△DMA(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线y=kx(k≠0)和直线DE的解析式.
    (2)解析式联立求得E的坐标,然后根据勾股定理求得DE和DB,进而求得CN的长,即可根据三角形面积公式求得△DEC的面积.
    【解析】∵点A的坐标为(0,2),点B的坐标为(1,0),
    ∴OA=2,OB=1,
    作DM⊥y轴于M,
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°,AB=AD,
    ∴∠OAB+∠DAM=90°,
    ∵∠OAB+∠ABO=90°,
    ∴∠DAM=∠ABO,
    在△AOB和△DMA中
    ∠ABO=∠DAM∠AOB=∠DMA=90°AB=DA,
    ∴△AOB≌△DMA(AAS),
    ∴AM=OB=1,DM=OA=2,
    ∴D(2,3),
    ∵双曲线y═kx(k≠0)经过D点,
    ∴k=2×3=6,
    ∴双曲线为y=6x,
    设直线DE的解析式为y=mx+n,
    把B(1,0),D(2,3)代入得m+n=02m+n=3,解得m=3n=-3,
    ∴直线DE的解析式为y=3x﹣3;
    (2)连接AC,交BD于N,
    ∵四边形ABCD是正方形,
    ∴BD垂直平分AC,AC=BD,
    解y=3x-3y=6x得x=2y=3或x=-1y=-6,
    ∴E(﹣1,﹣6),
    ∵B(1,0),D(2,3),
    ∴DE=(2+1)2+(3+6)2=310,DB=(2-1)2+32=10,
    ∴CN=12BD=102,
    ∴S△DEC=12DE•CN=12×310×102=152.

    7.(2020•牡丹江)如图,已知直线AB与x轴交于点A,与y轴交于点B,线段OA的长是方程x2﹣7x﹣18=0的一个根,OB=12OA.请解答下列问题:
    (1)求点A,B的坐标;
    (2)直线EF交x轴负半轴于点E,交y轴正半轴于点F,交直线AB于点C.若C是EF的中点,OE=6,反比例函数y=kx图象的一支经过点C,求k的值;
    (3)在(2)的条件下,过点C作CD⊥OE,垂足为D,点M在直线AB上,点N在直线CD上.坐标平面内是否存在点P,使以D,M,N,P为顶点的四边形是正方形?若存在,请写出点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.

    【分析】(1)解一元二次方程,得到点A的坐标,再根据OB=12OA可得点B坐标;
    (2)利用待定系数法求出直线AB的表达式,根据点C是EF的中点,得到点C横坐标,代入可得点C坐标,根据点C在反比例函数图象上求出k值;
    (3)画出图形,可得点P共有5个位置,分别求解即可.
    【解析】(1)∵线段 的长是方程 的一个根,
    解得:x=9或﹣2(舍),而点A在x轴正半轴,
    ∴A(9,0),
    ∵OB=12OA,
    ∴B(0,92),
    (2)∵OE=6,
    ∴E(﹣6,0),
    设直线AB的表达式为y=kx+b,将点A和B的坐标代入,
    得:0=9k+b92=b,解得:k=-12b=92,
    ∴AB的表达式为:y=-12x+92,
    ∵点C是EF的中点,
    ∴点C的横坐标为﹣3,代入AB中,y=6,
    则C(﹣3,6),
    ∵反比例函数y=kx经过点C,
    则k=﹣3×6=﹣18;
    (3)存在点P,使以D,M,N,P为顶点的四边形是正方形,
    如图,共有5种情况,
    在四边形DM1P1N1中,
    M1和点A重合,
    ∴M1(9,0),
    此时P1(9,12);
    在四边形DP3BN3中,点B和M重合,
    可知M在直线y=x+3上,
    联立:y=x+3y=-12x+92,
    解得:x=1y=4,
    ∴M(1,4),
    ∴P3(1,0),
    同理可得:P2(9,﹣12),P4(﹣7,4),P5(﹣15,0).
    故存在点P使以D,M,N,P为顶点的四边形是正方形,
    点P的坐标为P1(9,12),P2(9,﹣12),P3(1,0),P4(﹣7,4),P5(﹣15,0).

    8.(2020•广元)如图所示,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(3,4),B(n,﹣1).
    (1)求反比例函数和一次函数的解析式;
    (2)在x轴上存在一点C,使△AOC为等腰三角形,求此时点C的坐标;
    (3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.

    【分析】(1)先把A点坐标代入反比例函数解析式求得反比例函数的解析,再把B点坐标代入所求得的反比例函数的解析式,求得B点坐标,最后用待定系数法求出一次函数的解析式便可;
    (2)分三种情况:OA=OC,AO=AC,CA=CO,分别求解即可;
    (3)根据图象得出一次函数图象在反比例函数图象上方时x的取值范围即可.
    【解析】(1)把A(3,4)代入y=mx,
    ∴m=12,
    ∴反比例函数是y=12x;
    把B(n,﹣1)代入y=12x得n=﹣12.
    把A(3,4)、B(﹣12,﹣1)分别代入y=kx+b中,
    得3k+b=4-12k+b=-1,
    解得k=13b=3,
    ∴一次函数的解析式为y=13x+3;

    (2)∵A(3,4),
    ∴OA=32+42=5,
    ∵△AOC为等腰三角形,
    分三种情况:
    ①当OA=OC时,OC=5,
    此时点C的坐标为(5,0),(﹣5,0);
    ②当AO=AC时,∵A(3,4),点C和点O关于过A点且垂直于x轴的直线对称,
    此时点C的坐标为(6,0);
    ③当CA=CO时,点C在线段OA的垂直平分线上,
    过A作AD⊥x轴,垂足为D,
    由题意可得:OD=3,AD=4,AO=5,设OC=x,则AC=x,
    在△ACD中,42+(x﹣3)2=x2,
    解得:x=256,
    此时点C的坐标为(256,0);

    综上:点C的坐标为:(6,0),(5,0),(256,0),(﹣5,0);

    (3)由图得:
    当一次函数图象在反比例函数图象上方时,
    ﹣12<x<0或x>3,
    即使一次函数的值大于反比例函数的值的x的取值范围是:﹣12<x<0或x>3.
    9.(2020•常州)如图,正比例函数y=kx的图象与反比例函数y=8x(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.
    (1)求a的值及正比例函数y=kx的表达式;
    (2)若BD=10,求△ACD的面积.

    【分析】(1)把把点A(a,4)代入反比例函数关系式可求出a的值,确定点A的坐标,进而求出正比例函数的关系式;
    (2)根据BD=10,求出点B的横坐标,求出OB,代入求出BC,根据三角形的面积公式进行计算即可.
    【解析】(1)把点A(a,4)代入反比例函数y=8x(x>0)得,
    a=84=2,
    ∴点A(2,4),代入y=kx得,k=2,
    ∴正比例函数的关系式为y=2x,
    答:a=2,正比例函数的关系式为y=2x;
    (2)当BD=10=y时,代入y=2x得,x=5,
    ∴OB=5,
    当x=5代入y=8x得,y=85,即BC=85,
    ∴CD=BD﹣BC=10-85=425,
    ∴S△ACD=12×425×(5﹣2)=12.6,
    10.(2020•荆州)九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y=2|x|的图象与性质共探究过程如下:
    (1)绘制函数图象,如图1.
    列表:下表是x与y的几组对应值,其中m= 1 ;
    x

    ﹣3
    ﹣2
    ﹣1
    -12
    12
    1
    2
    3

    y

    23
    1
    2
    4
    4
    2
    m
    23

    描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;
    连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;
    (2)通过观察图1,写出该函数的两条性质;
    ① 函数的图象关于y轴对称 ;
    ② 当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小 ;
    (3)①观察发现:如图2.若直线y=2交函数y=2|x|的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC= 4 ;
    ②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC= 4 ;
    ③类比猜想:若直线y=a(a>0)交函数y=k|x|(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC= 2k .

    【分析】(1)根据表格中的数据的变化规律得出当x<0时,xy=﹣2,而当x>0时,xy=2,求出m的值;补全图象;
    (2)根据(1)中的图象,得出两条图象的性质;
    (3)由图象的对称性,和四边形的面积与k的关系,得出答案.
    【解析】(1)当x<0时,xy=﹣2,而当x>0时,xy=2,
    ∴m=1,
    故答案为:1;补全图象如图所示:
    (2)故答案为:①函数的图象关于y轴对称,②当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;
    (3)如图,①由A,B两点关于y轴对称,由题意可得四边形OABC是平行四边形,且S四边形OABC=4S△OAM=4×12|k|=2|k|=4,
    ②同①可知:S四边形OABC=2|k|=4,
    ③S四边形OABC=2|k|=2k,
    故答案为:4,4,2k.


    11.(2020•攀枝花)如图,过直线y=kx+12上一点P作PD⊥x轴于点D,线段PD交函数y=mx(x>0)的图象于点C,点C为线段PD的中点,点C关于直线y=x的对称点C'的坐标为(1,3).
    (1)求k、m的值;
    (2)求直线y=kx+12与函数y=mx(x>0)图象的交点坐标;
    (3)直接写出不等式mx>kx+12(x>0)的解集.

    【分析】(1)根据点C′在反比例函数图象上求出m值,利用对称性求出点C的坐标,从而得出点P坐标,代入一次函数表达式求出k值;
    (2)将两个函数表达式联立,得到一元二次方程,求解即可;
    (3)根据(2)中交点坐标,结合图象得出结果.
    【解析】(1)∵C′的坐标为(1,3),
    代入y=mx(x>0)中,
    得:m=1×3=3,
    ∵C和C′关于直线y=x对称,
    ∴点C的坐标为(3,1),
    ∵点C为PD中点,
    ∴点P(3,2),
    将点P代入y=kx+12,
    ∴解得:k=12;
    ∴k和m的值分别为:3,12;
    (2)联立:y=12x+12y=3x,得:x2+x﹣6=0,
    解得:x1=2,x2=﹣3(舍),
    ∴直线y=kx+12与函数y=mx(x>0)图象的交点坐标为(2,32);
    (3)∵两个函数的交点为:(2,32),
    由图象可知:当0<x<2时,反比例函数图象在一次函数图象上面,
    ∴不等式mx>kx+12(x>0)的解集为:0<x<2.
    12.(2020•岳阳)如图,一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),B两点.
    (1)求反比例函数的表达式;
    (2)将一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),使平移后的图象与反比例函数y=kx的图象有且只有一个交点,求b的值.

    【分析】(1)根据一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),可得m=4,进而可求反比例函数的表达式;
    (2)根据一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),可得y=x+5﹣b,根据平移后的图象与反比例函数y=kx的图象有且只有一个交点,联立方程根据判别式=0即可求出b的值.
    【解析】(1)∵一次函数y=x+5的图象与反比例函数y=kx(k为常数且k≠0)的图象相交于A(﹣1,m),
    ∴m=4,
    ∴k=﹣1×4=﹣4,
    ∴反比例函数解析式为:y=-4x;
    (2)∵一次函数y=x+5的图象沿y轴向下平移b个单位(b>0),
    ∴y=x+5﹣b,
    ∵平移后的图象与反比例函数y=kx的图象有且只有一个交点,
    ∴x+5﹣b=-4x,
    ∴x2+(5﹣b)x+4=0,
    ∵△=(5﹣b)2﹣16=0,
    解得b=9或1,
    答:b的值为9或1.
    13.(2020•江西)如图,Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=kx(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA,OC,并延长OC交AB于点E,当AB=2OA时,点E恰为AB的中点,若∠AOD=45°,OA=22.
    (1)求反比例函数的解析式;
    (2)求∠EOD的度数.

    【分析】(1)根据题意求得A(2,2),然后代入y=kx(x>0),求得k的值,即可求得反比例函数的解析式;
    (2)根据AB=2OA时,点E恰为AB的中点,得出OA=AE=BE,根据直角三角形斜边中线的性质得出CE=AE=BE,根据等腰三角形的性质越久三角形外角的性质即可得出∠AOE=2∠EOD,从而求得∠EOD=15°.
    【解析】(1)∵直线AC⊥x轴,垂足为D,∠AOD=45°,
    ∴△AOD是等腰直角三角形,
    ∵OA=22,
    ∴OD=AD=2,
    ∴A(2,2),
    ∵顶点A在反比例函数y=kx(x>0)的图象上,
    ∴k=2×2=4,
    ∴反比例函数的解析式为y=4x;
    (2)∵AB=2OA,点E恰为AB的中点,
    ∴OA=AE,
    ∵Rt△ABC中,∠ACB=90°,
    ∴CE=AE=BE,
    ∴∠AOE=∠AEO,∠ECB=∠EBC,
    ∵∠AEO=∠ECB+∠EBC=2∠EBC,
    ∵BC∥x轴,
    ∴∠EOD=∠ECB,
    ∴∠AOE=2∠EOD,
    ∵∠AOD=45°,
    ∴∠EOD=15°.
    14.(2020•泰安)如图,已知一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(3,a),点B(14﹣2a,2).
    (1)求反比例函数的表达式;
    (2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.

    【分析】(1)点A(3,a),点B(14﹣2a,2)在反比例函数上,则3×a=(14﹣2a)×2,即可求解;
    (2)a=4,故点A、B的坐标分别为(3,4)、(6,2),求出一次函数的表达式为:y=-23x+6,则点C(0,6),故OC=6,进而求解.
    【解析】(1)∵点A(3,a),点B(14﹣2a,2)在反比例函数上,
    ∴3×a=(14﹣2a)×2,解得:a=4,则m=3×4=12,
    故反比例函数的表达式为:y=12x;

    (2)∵a=4,故点A、B的坐标分别为(3,4)、(6,2),
    设直线AB的表达式为:y=kx+b,则4=3k+b2=6k+6,解得k=-23b=6,
    故一次函数的表达式为:y=-23x+6;
    当x=0时,y=6,故点C(0,6),故OC=6,
    而点D为点C关于原点O的对称点,则CD=2OC=12,
    △ACD的面积=12×CD•xA=12×12×3=18.
    15.(2020•枣庄)如图,在平面直角坐标系中,一次函数y=12x+5和y=﹣2x的图象相交于点A,反比例函数y=kx的图象经过点A.
    (1)求反比例函数的表达式;
    (2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,连接OB,求△ABO的面积.

    【分析】(1)联立y=12x+5①和y=﹣2x并解得:x=-2y=4,故点A(﹣2.4),进而求解;
    (2)S△AOB=S△AOC﹣S△BOC=12×OC•AM-12OC•BN,即可求解.
    【解析】(1)联立y=12x+5①和y=﹣2x并解得:x=-2y=4,故点A(﹣2.4),
    将点A的坐标代入反比例函数表达式得:4=k-2,解得:k=﹣8,
    故反比例函数表达式为:y=-8x②;

    (2)联立①②并解得:x=﹣2或﹣8,
    当x=﹣8时,y=12x+5=1,故点B(﹣8,1),
    设y=12x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,

    则S△AOB=S△AOC﹣S△BOC=12×OC•AM-12OC•BN=12×4×10-12×10×1=15.
    16.(2020•徐州)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(0,﹣4)、B(2,0),交反比例函数y=mx(x>0)的图象于点C(3,a),点P在反比例函数的图象上,横坐标为n(0<n<3),PQ∥y轴交直线AB于点Q,D是y轴上任意一点,连接PD、QD.
    (1)求一次函数和反比例函数的表达式;
    (2)求△DPQ面积的最大值.

    【分析】(1)由A(0,﹣4)、B(2,0)的坐标可求出一次函数的关系式,进而求出点C的坐标,确定反比例函数的关系式;
    (2)根据题意,要使三角形PDQ的面积最大,可用点P的横坐标n,表示三角形PDQ的面积,依据二次函数的最大值的计算方法求出结果即可.
    【解析】(1)把A(0,﹣4)、B(2,0)代入一次函数y=kx+b得,
    b=-42k+b=0,解得,k=2b=-4,
    ∴一次函数的关系式为y=2x﹣4,
    当x=3时,y=2×3﹣4=2,
    ∴点C(3,2),
    ∵点C在反比例函数的图象上,
    ∴k=3×2=6,
    ∴反比例函数的关系式为y=6x,
    答:一次函数的关系式为y=2x﹣4,反比例函数的关系式为y=6x;
    (2)点P在反比例函数的图象上,点Q在一次函数的图象上,
    ∴点P(n,6n),点Q(n,2n﹣4),
    ∴PQ=6n-(2n﹣4),
    ∴S△PDQ=12n[6n-(2n﹣4)]=﹣n2+2n+3=﹣(n﹣1)2+4,
    ∴当n=1时,S最大=4,
    答:△DPQ面积的最大值是4.
    17.(2020•天水)如图所示,一次函数y=mx+n(m≠0)的图象与反比例函数y=kx(k≠0)的图象交于第二、四象限的点A(﹣2,a)和点B(b,﹣1),过A点作x轴的垂线,垂足为点C,△AOC的面积为4.
    (1)分别求出a和b的值;
    (2)结合图象直接写出mx+n>kx中x的取值范围;
    (3)在y轴上取点P,使PB﹣PA取得最大值时,求出点P的坐标.

    【分析】(1)根据△AOC的面积为4和反比例函数图象的位置,可以确定k的值,进而确定反比例函数的关系式,代入可求出点A、B的坐标,求出a、b的值;
    (2)根据图象直接写出mx+n>kx的解集;
    (3)求出点A(﹣2,4)关于y轴的对称点A′(2,4),根据题意直线A′B与y轴的交点即为所求的点P,求出直线A′B的关系式,进而求出与y轴的交点坐标即可.
    【解析】(1)∵△AOC的面积为4,
    ∴12|k|=4,
    解得,k=﹣8,或k=8(不符合题意舍去),
    ∴反比例函数的关系式为y=-8x,
    把点A(﹣2,a)和点B(b,﹣1)代入y=-8x得,
    a=4,b=8;
    答:a=4,b=8;
    (2)根据一次函数与反比例函数的图象可知,不等式mx+n>kx的解集为x<﹣2或0<x<8;
    (3)∵点A(﹣2,4)关于y轴的对称点A′(2,4),
    又B(8,﹣1),则直线A′B与y轴的交点即为所求的点P,
    设直线A′B的关系式为y=cx+d,
    则有2c+d=48c+d=-1,
    解得,c=-56d=173,
    ∴直线A′B的关系式为y=-56x+173,
    ∴直线y=-56x+173与y轴的交点坐标为(0,173),
    即点P的坐标为(0,173).
    18.(2020•青海)如图1(注:与图2完全相同)所示,抛物线y=-12x2+bx+c经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.
    (1)求抛物线的解析式.
    (2)设抛物线的顶点为M,求四边形ABMC的面积.(请在图1中探索)
    (3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)

    【分析】(1)用待定系数法解答便可;
    (2)求出抛物线与坐标轴的交点A、D坐标及抛物线顶点M的坐标,再将四边形ABMC的面积分为三角形的面积的和,进行计算便可;
    (3)分两种情况:AB为平行四边形的边;AB为平行四边形的对角线.分别解答便可.
    【解析】(1)把B(3,0)和D(﹣2,-52)代入抛物线的解析式得,
    -92+3b+c=0-2-2b+c=-52,
    解得,b=1c=32,
    ∴抛物线的解析式为:y=-12x2+x+32;
    (2)令x=0,得y=-12x2+x+32=32,
    ∴C(0,32),
    令y=0,得y=-12x2+x+32=0,
    解得,x=﹣1,或x=3,
    ∴A(﹣1,0),
    ∵y=-12x2+x+32=-12(x-1)2+2,
    ∴M(1,2),
    ∴S四边形ABMC=S△AOC+S△COM+S△MOM
    =12OA⋅OC+12OC⋅xM+12OB⋅yM
    =12×1×32+12×32×1+12×3×2=92;

    (3)设Q(0,n),
    ①当AB为平行四边形的边时,有AB∥PQ,AB=PQ,
    a).Q点在P点左边时,则Q(﹣4,n),
    把Q(﹣4,n)代入y=-12x2+x+32,得
    n=-212,
    ∴P(﹣4,-212);
    ②Q点在P点右边时,则Q(4,n),
    把Q(4,n)代入y=-12x2+x+32,得
    n=-52,
    ∴P(4,-52);
    ③当AB为平行四边形的对角线时,如图2,AB与PQ交于点E,
    则E(1,0),
    ∵PE=QE,
    ∴P(2,﹣n),
    把P(2,﹣n)代入y=-12x2+x+32,得
    ﹣n=32,
    ∴n=-32,
    ∴P(2,32).

    综上,满足条件的P点坐标为:(﹣4,-212)或(4,-52)或(2,32).
    19.(2020•山西)综合与探究
    如图,抛物线y=14x2﹣x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,﹣3).
    (1)请直接写出A,B两点的坐标及直线l的函数表达式;
    (2)若点P是抛物线上的点,点P的横坐标为m(m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;
    (3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.

    【分析】(1)令y=0,便可由抛物线的解析式求得A、B点坐标,用待定系数法求得直线AD的解析式;
    (2)设P(m,14m2﹣m﹣3),用m表示N点坐标,分两种情况:PM=3MN;PM=3PN.分别列出m的方程进行解答便可;
    (3)分两种情况,Q点在y轴正半轴上时;Q点在y轴负半轴上时.分别解决问题.
    【解析】(1)令y=0,得y=14x2﹣x﹣3=0,
    解得,x=﹣2,或x=6,
    ∴A(﹣2,0),B(6,0),
    设直线l的解析式为y=kx+b(k≠0),则
    -2k+b=04k+b=-3,
    解得,k=-12b=-1,
    ∴直线l的解析式为y=-12x-1;
    (2)如图1,根据题意可知,点P与点N的坐标分别为
    P(m,14m2﹣m﹣3),N(m,-12m﹣1),

    ∴PM=-14m2+m+3,MN=12m+1,NP=-14m2+12m+2,
    分两种情况:
    ①当PM=3MN时,得-14m2+m+3=3(12m+1),
    解得,m=0,或m=﹣2(舍),
    ∴P(0,﹣3);
    ②当PM=3NP时,得-14m2+m+3=3(-14m2+12m+2),
    解得,m=3,或m=﹣2(舍),
    ∴P(3,-154);
    ∴当点N是线段PM的三等分点时,点P的坐标为(3,-154)或(0,﹣3);
    (3)∵直线ly=-12x-1与y轴于点E,
    ∴点E的坐标为(0,﹣1),
    分再种情况:①如图2,当点Q在y轴的正半轴上时,记为点Q1,

    过Q1作Q1H⊥AD于点H,则∠QE=∠AOE=90°,
    ∵∠Q1EH=∠AEO,
    ∴△Q1EH∽△AEO,
    ∴Q1HAO=EHEO,即Q1H2=EH1
    ∴Q1H=2HE,
    ∵∠Q1DH=45°,∠Q1HD=90°,
    ∴Q1H=DH,
    ∴DH=2EH,
    ∴HE=ED,
    连接CD,
    ∵C(0,﹣3),D(4,﹣3),
    ∴CD⊥y轴,
    ∴ED=CE2+CD2=22+42=25,
    ∴HE=ED=25,Q1H=2EH=45,
    ∴Q1E=Q1H2+EH2=10,
    ∴Q1O=Q1E﹣OE=9,
    ∴Q1(0,9);
    ②如图3,当点Q在y轴的负半轴上时,记为点Q2,过Q2作Q2G⊥AD于G,则∠Q2GE=∠AOE=90°,

    ∵∠Q2EG=∠AEO,
    ∴△Q2GE∽△AOE,
    ∴Q2GAO=EGOE,即Q2G2=EG1,
    ∴Q2G=2EG,
    ∵∠Q2DG=45°,∠Q2GD=90°,
    ∴∠DQ2G=∠Q2DG=45°,
    ∴DG=Q2G=2EG,
    ∴ED=EG+DG=3EG,
    由①可知,ED=25,
    ∴3EG=25,
    ∴EG=253,
    ∴Q2G=453,
    ∴EQ2=EG2+Q2G2=103,
    ∴OQ2=OE+EQ2=133,
    ∴Q2(0,-133),
    综上,点Q的坐标为(0.9)或(0,-133).
    20.(2020•通辽)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C.且直线y=x﹣6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.
    (1)求抛物线的函数解析式;
    (2)当△MDB的面积最大时,求点P的坐标;
    (3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由.

    【分析】(1)由一次函数图象与坐标轴交点B、D的坐标,再由对称求得C点坐标,再用待定系数法求抛物线的解析式;
    (2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),由三角形的面积公式求得△MDB的面积关于m的二次函数,最后根据二次函数的最大值的求法,求得m的值,进而得P点的坐标;
    (3)分三种情况:M为直角顶点;N为直角顶点;Q为直角顶点.分别得出Q点的坐标.
    【解析】(1)令y=0,得y=x﹣6=0,
    解得x=6,
    ∴B(6,0),
    令x=0,得y=x﹣6=﹣6,
    ∴D(0,﹣6),
    ∵点C与点D关于x轴对称,
    ∴C(0,6),
    把B、C点坐标代入y=﹣x2+bx+c中,得
    -36+6b+c=0c=6,
    解得,b=5c=6,
    ∴抛物线的解析式为:y=﹣x2+5x+6;
    (2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),
    则MN=﹣m2+4m+12,
    ∴△MDB的面积=12MN⋅OB=-3m2+12m+36═﹣3(m﹣2)2+48,
    ∴当m=2时,△MDB的面积最大,
    此时,P点的坐标为(2,0);

    (3)由(2)知,M(2,12),N(2,﹣4),
    当∠QMN=90°时,QM∥x轴,则Q(0,12);
    当∠MNQ=90°时,NQ∥x轴,则Q(0,﹣4);
    当∠MQN=90°时,设Q(0,n),则QM2+QN2=MN2,
    即4+(12﹣n)2+4+(n+4)2=(12+4)2,
    解得,n=4±55,
    ∴Q(0,4+55)或(0,4-55).
    综上,存在以Q,M,N三点为顶点的三角形是直角三角形.其Q点坐标为(0,12)或(0,﹣4)或(0,4+55)或(0,4-55).
    21.(2020•衢州)如图1,在平面直角坐标系中,△ABC的顶点A,C分别是直线y=-83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE⊥BC于点E,点F在边AB上,且D,F两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:
    ①线段EF长度是否有最小值.
    ②△BEF能否成为直角三角形.
    小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.
    (1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.
    (2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.
    (3)小明通过观察,推理,发现△BEF能成为直角三角形,请你求出当△BEF为直角三角形时m的值.

    【分析】(1)根据描点法画图即可;
    (2)过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,证明Rt△FGK≌Rt△DHK(AAS),由全等三角形的性质得出FG=DH,可求出F(﹣m,﹣2m+4),根据勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函数的性质可得出答案;
    (3)分三种不同情况,根据直角三角形的性质得出m的方程,解方程求出m的值,则可求出答案.
    【解析】(1)用描点法画出图形如图1,由图象可知函数类别为二次函数.

    (2)如图2,过点F,D分别作FG,DH垂直于y轴,垂足分别为G,H,

    则∠FGK=∠DHK=90°,
    记FD交y轴于点K,
    ∵D点与F点关于y轴上的K点成中心对称,
    ∴KF=KD,
    ∵∠FKG=∠DKH,
    ∴Rt△FGK≌Rt△DHK(AAS),
    ∴FG=DH,
    ∵直线AC的解析式为y=-83x+4,
    ∴x=0时,y=4,
    ∴A(0,4),
    又∵B(﹣2,0),
    设直线AB的解析式为y=kx+b,
    ∴-2k+b=0b=4,
    解得k=2b=4,
    ∴直线AB的解析式为y=2x+4,
    过点F作FR⊥x轴于点R,
    ∵D点的橫坐标为m,
    ∴F(﹣m,﹣2m+4),
    ∴ER=2m,FR=﹣2m+4,
    ∵EF2=FR2+ER2,
    ∴l=EF2=8m2﹣16m+16=8(m﹣1)2+8,
    令-8x3+4=0,得x=32,
    ∴0≤m≤32.
    ∴当m=1时,l的最小值为8,
    ∴EF的最小值为22.
    (3)①∠FBE为定角,不可能为直角.
    ②∠BEF=90°时,E点与O点重合,D点与A点,F点重合,此时m=0.
    ③如图3,∠BFE=90°时,有BF2+EF2=BE2.

    由(2)得EF2=8m2﹣16m+16,
    又∵BR=﹣m+2,FR=﹣2m+4,
    ∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,
    又∵BE2=(m+2)2,
    ∴(5m2﹣20m+20)+(8m2﹣16m+16)=(m+2)2,
    化简得,3m2﹣10m+8=0,
    解得m1=43,m2=2(不合题意,舍去),
    ∴m=43.
    综合以上可得,当△BEF为直角三角形时,m=0或m=43.
    22.(2020•株洲)如图所示,△OAB的顶点A在反比例函数y=kx(k>0)的图象上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且AE=1.
    (1)若点E为线段OC的中点,求k的值;
    (2)若△OAB为等腰直角三角形,∠AOB=90°,其面积小于3.
    ①求证:△OAE≌△BOF;
    ②把|x1﹣x2|+|y1﹣y2|称为M(x1,y1),N(x2,y2)两点间的“ZJ距离”,记为d(M,N),求d(A,C)+d(A,B)的值.

    【分析】(1)由点E为线段OC的中点,可得E点坐标为(0,52),进而可知A点坐标为:A(1,52),代入解析式即可求出k;
    (2)①由△OAB为等腰直角三角形,可得AO=OB,再根据同角的余角相等可证∠AOE=∠FBO,由AAS即可证明△OAE≌△BOF;
    ②由“ZJ距离”的定义可知d(M,N)为MN两点的水平离与垂直距离之和,故d(A,C)+d(A,B)=BF+CF,即只需求出B点坐标即可,设点A(1,m),由△OAE≌△BOF可得B(m,﹣1),进而代入直线AB解析式求出k值即可解答.
    【解析】(1)∵点E为线段OC的中点,OC=5,
    ∴OE=12OC=52,即:E点坐标为(0,52),
    又∵AE⊥y轴,AE=1,
    ∴A(1,52),
    ∴k=1×52=52.
    (2)①在△OAB为等腰直角三角形中,AO=OB,∠AOB=90°,
    ∴∠AOE+∠FOB=90°,
    又∵BF⊥y轴,
    ∴∠FBO+∠FOB=90°,
    ∴∠AOE=∠FBO,
    在△OAE和△BOF中,
    ∠AEO=∠OFB=90°∠AOE=∠FBOAO=BO,
    ∴△OAE≌△BOF(AAS),
    ②解:设点A坐标为(1,m),
    ∵△OAE≌△BOF,
    ∴BF=OE=m,OF=AE=1,
    ∴B(m,﹣1),
    设直线AB解析式为:lAB:y=kx+5,将AB两点代入得:
    则k+5=mkm+5=-1.
    解得k1=-3m1=2,k2=-2m2=3.
    当m=2时,OE=2,OA=5,S△AOB=52<3,符合;
    ∴d(A,C)+d(A,B)=AE+CE+(BF﹣AE)+(OE+OF)=1+CE+OE﹣1+OE+1=1+CE+2OE=1+CO+OE=1+5+2=8,
    当m=3时,OE=3,OA=10,S△AOB=5>3,不符,舍去;
    综上所述:d(A,C)+d(A,B)=8.
    23.(2020•广东)如图,点B是反比例函数y=8x(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=kx(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.
    (1)填空:k= 2 ;
    (2)求△BDF的面积;
    (3)求证:四边形BDFG为平行四边形.

    【分析】(1)设点B(s,t),st=8,则点M(12s,12t),则k=12s•12t=14st=2;
    (2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;
    (3)确定直线DE的表达式为:y=-12m2x+52m,令y=0,则x=5m,故点F(5m,0),即可求解.
    【解析】(1)设点B(s,t),st=8,则点M(12s,12t),
    则k=12s•12t=14st=2,
    故答案为2;

    (2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=12×8-12×2=3;

    (3)设点D(m,2m),则点B(4m,2m),
    ∵点G与点O关于点C对称,故点G(8m,0),
    则点E(4m,12m),
    设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得2m=ms+n12m=4ms+n,解得k=-12m2b=52m,
    故直线DE的表达式为:y=-12m2x+52m,令y=0,则x=5m,故点F(5m,0),
    故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,
    则FG∥BD,故四边形BDFG为平行四边形.
    24.(2019•沈阳)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.

    (1)k的值是 -12 ;
    (2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.
    ①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;
    ②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为334,请直接写出点C的坐标.
    【分析】(1)根据点A的坐标,利用待定系数法可求出k值;
    (2)①利用一次函数图象上点的坐标特征可得出点B的坐标,由平行四边形的性质结合点E为OB的中点可得出CE是△ABO的中位线,结合点A的坐标可得出CE的长,在Rt△DOE中,利用勾股定理可求出DE的长,再利用平行四边形的周长公式即可求出▱OCED的周长;
    ②设点C的坐标为(x,-12x+4),则CE=|x|,CD=|-12x+4|,利用三角形的面积公式结合△CDE的面积为334可得出关于x的方程,解之即可得出结论.
    【解析】(1)将A(8,0)代入y=kx+4,得:0=8k+4,
    解得:k=-12.
    故答案为:-12.
    (2)①由(1)可知直线AB的解析式为y=-12x+4.
    当x=0时,y=-12x+4=4,
    ∴点B的坐标为(0,4),
    ∴OB=4.
    ∵点E为OB的中点,
    ∴BE=OE=12OB=2.
    ∵点A的坐标为(8,0),
    ∴OA=8.
    ∵四边形OCED是平行四边形,
    ∴CE∥DA,
    ∴BCAC=BEOE=1,
    ∴BC=AC,
    ∴CE是△ABO的中位线,
    ∴CE=12OA=4.
    ∵四边形OCED是平行四边形,
    ∴OD=CE=4,OC=DE.
    在Rt△DOE中,∠DOE=90°,OD=4,OE=2,
    ∴DE=OD2+OE2=25,
    ∴C平行四边形OCED=2(OD+DE)=2(4+25)=8+45.
    ②设点C的坐标为(x,-12x+4),则CE=|x|,CD=|-12x+4|,
    ∴S△CDE=12CD•CE=|-14x2+2x|=334,
    ∴x2﹣8x+33=0或x2﹣8x﹣33=0.
    方程x2﹣8x+33=0无解;
    解方程x2﹣8x﹣33=0,得:x1=﹣3,x2=11,
    ∴点C的坐标为(﹣3,112)或(11,-32).


    25.(2020•绥化)如图,在矩形OABC中,AB=2,BC=4,点D是边AB的中点,反比例函数y1=kx(x>0)的图象经过点D,交BC边于点E,直线DE的解析式为y2=mx+n(m≠0).
    (1)求反比例函数y1=kx(x>0)的解析式和直线DE的解析式;
    (2)在y轴上找一点P,使△PDE的周长最小,求出此时点P的坐标;
    (3)在(2)的条件下,△PDE的周长最小值是 5+13 .

    【分析】(1)根据线段中点的定义和矩形的性质得到D(1,4),解方程和方程组即可得到结论;
    (2)作点D关于y轴的对称点D′,连接D′E交y轴于P,连接PD,此时,△PDE的周长最小,求得直线D′E的解析式为y=-23x+103,于是得到结论;
    (3)根据勾股定理即可得到结论.
    【解析】(1)∵点D是边AB的中点,AB=2,
    ∴AD=1,
    ∵四边形OABC是矩形,BC=4,
    ∴D(1,4),
    ∵反比例函数y1=kx(x>0)的图象经过点D,
    ∴k=4,
    ∴反比例函数的解析式为y=4x(x>0),
    当x=2时,y=2,
    ∴E(2,2),
    把D(1,4)和E(2,2)代入y2=mx+n(m≠0)得,2m+n=2m+n=4,
    ∴m=-2n=6,
    ∴直线DE的解析式为y=﹣2x+6;
    (2)作点D关于y轴的对称点D′,连接D′E交y轴于P,连接PD,
    此时,△PDE的周长最小,
    ∵D点的坐标为(1,4),
    ∴D′的坐标为(﹣1,4),
    设直线D′E的解析式为y=ax+b,
    ∴4=-a+b2=2a+b,
    解得:a=-23b=103,
    ∴直线D′E的解析式为y=-23x+103,
    令x=0,得y=103,
    ∴点P的坐标为(0,103);
    (3)∵D(1,4),E(2,2),
    ∴BE=2,BD=1,
    ∴DE=12+22=5,
    由(2)知,D′的坐标为(﹣1,4),
    ∴BD′=3,
    ∴D′E=22+32=13,
    ∴△PDE的周长最小值=DE+D′E=5+13,
    故答案为:5+13.

    26.(2019•大连)如图,在平面直角坐标系xOy中,直线y=-34x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=53OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:
    (1)线段AB的长;
    (2)S关于m的函数解析式,并直接写出自变量m的取值范围.

    【分析】(1)由直线y=-34x+3与令x=0,或y=0,分别求出对应的y、x的值,从而确定A、B两点的坐标;
    (2)分两种情况进行分别探究,一种是点C在y轴的正半轴,即①当32<m≤3时,②当0<m≤32时,另一种是点C在y轴的负半轴,即,③当﹣3<m≤0时,④当m<﹣3时,分别画出相应的图象,根据三角形相似,求出相应的边的长用含有m的代数式表示,再表示面积,从而确定在不同情况下S与m的函数解析式.
    【解析】(1)当x=0时,y=3,
    当y=0时,x=4,
    ∴直线y=-34x+3与x轴点交A(4,0),与y轴交点B(0,3)
    ∴OA=4,OB=3,
    ∴AB=32+42=5,
    因此:线段AB的长为5.
    (2)当CD∥OA时,如图,
    ∵BD=53OC,OC=m,
    ∴BD=53m,
    由△BCD∽△BOA得:
    BDBA=BCBO,即:53m5=3-m3,解得:m=32;
    ①当32<m≤3时,如图1所示:过点D作DF⊥OB,垂足为F,
    此时在x轴下方的三角形与△CDF全等,
    ∵△BDF∽△BAO,
    ∴BDDF=BAOA=54,
    ∴DF=43m,同理:BF=m,
    ∴CF=2m﹣3,
    ∴S△CDF=12DF⋅CF=12(2m﹣3)×43m=43m2﹣2m,
    即:S=43m2﹣2m,(32<m≤3)
    ②当0<m≤32时,如图2所示:DE=m≤32,此时点E在△AOB的内部,
    S=0 (0<m≤32);
    ③当﹣3<m≤0时,如图3所示:同理可得:点D(-43m,m+3)
    设直线CD关系式为y=kx+b,把C(0,m)、D(-43m,m+3)代入得:
    b=m-43mk+b=m+3,解得:k=-94m,b=m,
    直线CD关系式为y=-94mx+m,
    当y=0时,0=-94mx+m,解得x=49m2
    F(49m2,0)
    ∴S△COF=12OC•OF=12(﹣m)×49m2=-29m3,
    即:S=-29m3,(﹣3<m≤0)
    ④当m<﹣3时,如图4所示:同理可得:点D(-43m,m+3)
    此时,DF=﹣m﹣3,OC=﹣m,OF=-43m,
    ∴S梯形OCDF=12(﹣m﹣3﹣m)×(-43m)=43m2+2m
    即:S=43m2+2m (m<﹣3)
    综上所述:S与m的函数关系式为:S=43m2-2m(32<m≤3)0(0<m≤32)-29m3(-3<m≤0)43m2+2m(m≤-3).





    27.(2020•常州)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.
    (1)填空:b= ﹣4 ;
    (2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD=∠ACB,求点P的坐标;
    (3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.

    【分析】(1)将点C坐标代入解析式可求解;
    (2)分两种情况讨论,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,可得点E(1,3),CE=BE=3,AE=1,可得∠EBC=∠ECB=45°,tan∠ACE=AEEC=13,∠BCF=45°,由勾股定理逆定理可得∠BCD=90°,可求∠ACE=∠DBC,可得∠ACB=∠CFD,可得点F与点Q重合,即可求点P坐标;
    当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,先求直线BD解析式,点F坐标,由中点坐标公式可求点Q坐标,求出CQ解析式,联立方程组,可求点P坐标;
    (3)设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,先求出∠CNH=45°,由轴对称的性质可得EN=NF,∠ENB=∠FNB=45°,由“AAS”可证△EMN≌△NKF,可得EM=NK=95,MN=KF,可求CF=6,由轴对称的性质可得点G坐标,即可求解.
    【解析】(1)∵抛物线y=x2+bx+3的图象过点C(1,0),
    ∴0=1+b+3,
    ∴b=﹣4,
    故答案为:﹣4;
    (2)∵b=4,
    ∴抛物线解析式为y=x2﹣4x+3
    ∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,
    ∴点A(0,3),3=x2﹣4x,
    ∴x1=0(舍去),x2=4,
    ∴点B(4,3),
    ∵y=x2﹣4x+3=(x﹣2)2﹣1,
    ∴顶点D坐标(2,﹣1),
    如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,

    ∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,
    ∴点E(1,3),CE=BE=3,AE=1,
    ∴∠EBC=∠ECB=45°,tan∠ACE=AEEC=13,
    ∴∠BCF=45°,
    ∵点B(4,3),点C(1,0),点D(2,﹣1),
    ∴BC=9+9=32,CD=1+1=2,BD=(4-2)2+(3+1)2=25,
    ∵BC2+CD2=20=BD2,
    ∴∠BCD=90°,
    ∴tan∠DBC=CDBC=232=13=tan∠ACE,
    ∴∠ACE=∠DBC,
    ∴∠ACE+∠ECB=∠DBC+∠BCF,
    ∴∠ACB=∠CFD,
    又∵∠CQD=∠ACB,
    ∴点F与点Q重合,
    ∴点P是直线CF与抛物线的交点,
    ∴0=x2﹣4x+3,
    ∴x1=1,x2=3,
    ∴点P(3,0);
    当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,

    ∵CH⊥DB,HF=QH,
    ∴CF=CQ,
    ∴∠CFD=∠CQD,
    ∴∠CQD=∠ACB,
    ∵CH⊥BD,
    ∵点B(4,3),点D(2,﹣1),
    ∴直线BD解析式为:y=2x﹣5,
    ∴点F(52,0),
    ∴直线CH解析式为:y=-12x+12,
    ∴y=-12x+12y=2x-5,
    解得x=115y=-35,
    ∴点H坐标为(115,-35),
    ∵FH=QH,
    ∴点Q(1910,-65),
    ∴直线CQ解析式为:y=-43x+43,
    联立方程组y=-43x+43y=x2-4x+3,
    解得:x1=1y1=0或x2=53y2=-89,
    ∴点P(53,-89);
    综上所述:点P的坐标为(3,0)或(53,-89);
    (3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,

    ∵点A(0,3),点C(1,0),
    ∴直线AC解析式为:y=﹣3x+3,
    ∴y=-3x+3y=2x-5,
    ∴x=85y=-95,
    ∴点N坐标为(85,-95),
    ∵点H坐标为(115,-35),
    ∴CH2=(115-1)2+(35)2=95,HN2=(115-85)2+(-35+95)2=95,
    ∴CH=HN,
    ∴∠CNH=45°,
    ∵点E关于直线BD对称的点为F,
    ∴EN=NF,∠ENB=∠FNB=45°,
    ∴∠ENF=90°,
    ∴∠ENM+∠FNM=90°,
    又∵∠ENM+∠MEN=90°,
    ∴∠MEN=∠FNM,
    ∴△EMN≌△NKF(AAS)
    ∴EM=NK=95,MN=KF,
    ∴点E的横坐标为-15,
    ∴点E(-15,185),
    ∴MN=275=KF,
    ∴CF=85+275-1=6,
    ∵点F关于直线BC对称的点为G,
    ∴FC=CG=6,∠BCF=∠GCB=45°,
    ∴∠GCF=90°,
    ∴点G(1,6),
    ∴AG=12+(6-3)2=10.
    28.(2020•营口)在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.
    (1)求抛物线的解析式;
    (2)点P为直线CD上的一个动点,连接BC;
    ①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;
    ②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.

    【分析】(1)y=ax2+bx﹣3=a(x+3)(x﹣1),即可求解;
    (2)①分点P(P′)在点C的右侧、点P在点C的左侧两种情况,分别求解即可;
    ②证明△AGR≌△RHM(AAS),则点M(m+n,n﹣m﹣3),利用点M在抛物线上和AR=NR,列出等式即可求解.
    【解析】(1)y=ax2+bx﹣3=a(x+3)(x﹣1),
    解得:a=1,
    故抛物线的表达式为:y=x2+2x﹣3①;

    (2)由抛物线的表达式知,点C、D的坐标分别为(0,﹣3)、(﹣1,﹣4),
    由点C、D的坐标知,直线CD的表达式为:y=x﹣3;
    tan∠BCO=13,则cos∠BCO=210;
    ①当点P(P′)在点C的右侧时,

    ∵∠PAB=∠BCO,
    故P′B∥y轴,则点P′(1,﹣2);
    当点P在点C的左侧时,
    设直线PB交y轴于点H,过点H作HN⊥BC于点N,
    ∵∠PAB=∠BCO,
    ∴△BCH为等腰三角形,则BC=2CH•cos∠BCO=2×CH×210=32+12,
    解得:CH=53,则OH=3﹣CH=43,故点H(0,-43),
    由点B、H的坐标得,直线BH的表达式为:y=43x-43②,
    联立①②并解得:x=-5y=-8,
    故点P的坐标为(1,﹣2)或(﹣5,﹣8);
    ②∵∠PAB=∠BCO,而tan∠BCO=13,
    故设直线AP的表达式为:y=13x+s,将点A的坐标代入上式并解得:s=1,
    故直线AP的表达式为:y=13x+1,
    联立①③并解得:x=43y=139,故点N(43,139);
    设△AMN的外接圆为圆R,

    当∠ANM=45°时,则∠ARM=90°,设圆心R的坐标为(m,n),
    ∵∠GRA+∠MRH=90°,∠MRH+∠RMH=90°,
    ∴∠RMH=∠GAR,
    ∵AR=MR,∠AGR=∠RHM=90°,
    ∴△AGR≌△RHM(AAS),
    ∴AG=m+3=RH,RG=﹣n=MH,
    ∴点M(m+n,n﹣m﹣3),
    将点M的坐标代入抛物线表达式得:n﹣m﹣3=(m+n)2+2(m+n)﹣3③,
    由题意得:AR=NR,即(m+3)2=(m-43)2+(139)2④,
    联立③④并解得:m=-29n=-109,
    故点M(-43,-359).
    29.(2020•哈尔滨)已知:在平面直角坐标系中,点O为坐标原点,直线AB与x轴的正半轴交于点A,与y轴的负半轴交于点B,OA=OB,过点A作x轴的垂线与过点O的直线相交于点C,直线OC的解析式为y=34x,过点C作CM⊥y轴,垂足为M,OM=9.
    (1)如图1,求直线AB的解析式;
    (2)如图2,点N在线段MC上,连接ON,点P在线段ON上,过点P作PD⊥x轴,垂足为D,交OC于点E,若NC=OM,求PEOD的值;
    (3)如图3,在(2)的条件下,点F为线段AB上一点,连接OF,过点F作OF的垂线交线段AC于点Q,连接BQ,过点F作x轴的平行线交BQ于点G,连接PF交x轴于点H,连接EH,若∠DHE=∠DPH,GQ﹣FG=2AF,求点P的坐标.

    【分析】(1)求出A,B两点坐标,利用待定系数法解决问题即可.
    (2)由题意直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),求出PE,OD(用a表示)即可解决问题.
    (3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.证明△OFS≌△FQR(AAS),推出SF=QR,再证明△BSG≌△QRG(AAS),推出SG=GR=6,设FR=m,则AR=m,AF=2m,QR=SF=12﹣m,GQ﹣FG=2AF,根据GQ2=GR2+QR2,可得(m+6)2=62+(12﹣m)2,解得m=4,由题意tan∠DHE=tan∠DPH,可得DEDH=DHPD,由(2)可知DE=3a,PD=12a,推出3aDH=DH12a,可得DH=6a,推出tan∠PHD=PDDH=12a6a=2,由∠PHD=∠FHT,可得tan∠FHT=TFHT=2,推出HT=2,再根据OT=OD+DH+HT,构建方程求出a即可解决问题.
    【解析】(1)∵CM⊥y轴,OM=9,
    ∴y=9时,9=34x,解得x=12,
    ∴C(12,9),
    ∵AC⊥x轴,
    ∴A(12,0),
    ∵OA=OB,
    ∴B(0,﹣12),
    设直线AB的解析式为y=kx+b,则有b=-1212k+b=0,
    解得k=1b=-12,
    ∴直线AB的解析式为y=x﹣12.

    (2)如图2中,

    ∵∠CMO=∠MOA=∠OAC=90°,
    ∴四边形OACM是矩形,
    ∴AO=CM=12,
    ∵NC=OM=9,
    ∴MN=CM﹣NC=12﹣9=3,
    ∴N(3,9),
    ∴直线ON的解析式为y=3x,设点E的横坐标为4a,则D(4a,0),
    ∴OD=4a,
    把x=4a,代入y=34x中,得到y=3a,
    ∴E(4a,3a),
    ∴DE=3a,
    把x=4a代入,y=3x中,得到y=12a,
    ∴P(4a,12a),
    ∴PD=12a,
    ∴PE=PD﹣DE=12a﹣3a=9a,
    ∴PEOD=94.

    (3)如图3中,设直线FG交CA的延长线于R,交y轴于S,过点F作FT⊥OA于T.

    ∵GF∥x轴,
    ∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR,
    ∴∠OFR=∠R=∠AOS=∠BSG=90°,
    ∴四边形OSRA是矩形,
    ∴OS=AR,
    AR=OA=12,
    ∵OA=OB,
    ∴∠OBA=∠OAB=45°,
    ∴∠FAR=90°﹣45°=45°,
    ∴∠FAR=∠AFR,
    ∴FR=AR=OS,
    ∵OF⊥FQ,
    ∴∠OSR=∠R=∠OFQ=90°,
    ∴∠OFS+∠QFR=90°,
    ∵∠QFR+∠FQR=90°,
    ∴∠OFS=∠FQR,
    ∴△OFS≌△FQR(AAS),
    ∴SF=QR,
    ∵∠SFB=∠AFR=45°,
    ∴∠SBF=∠SFB=45°,
    ∴SF=SB=QR,
    ∵∠SGB=∠QGR,∠BSG=∠R,
    ∴△BSG≌△QRG(AAS),
    ∴SG=GR=6,
    设FR=m,则AR=m,AF=2m,QR=SF=12﹣m,
    ∵GQ﹣FG=2AF,
    ∴GQ=2×2m+6﹣m=m+6,
    ∵GQ2=GR2+QR2,
    ∴(m+6)2=62+(12﹣m)2,
    解得m=4,
    ∴FS=8,AR=4,
    ∵∠OAB=∠FAR,FT⊥OA,FR⊥AR,
    ∴FT=FR=AR=4,∠OTF=90°,
    ∴四边形OSFT是矩形,
    ∴OT=SF=8,
    ∵∠DHE=∠DPH,
    ∴tan∠DHE=tan∠DPH,
    ∴DEDH=DHPD,
    由(2)可知DE=3a,PD=12a,
    ∴3aDH=DH12a,
    ∴DH=6a,
    ∴tan∠PHD=PDDH=12a6a=2,
    ∵∠PHD=∠FHT,
    ∴tan∠FHT=TFHT=2,
    ∴HT=2,
    ∵OT=OD+DH+HT,
    ∴4a+6a+2=8,
    ∴a=35,
    ∴OD=125,PD=12×35=365,
    ∴P(125,365).
    30.(2020•金华)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.
    (1)求证:四边形AEFD为菱形.
    (2)求四边形AEFD的面积.
    (3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.

    【分析】(1)根据邻边相等的四边形是菱形证明即可.
    (2)连接DE,求出△ADE的面积即可解决问题.
    (3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.
    【解答】(1)证明:如图1中,

    ∵AE∥DF,AD∥EF,
    ∴四边形AEFD是平行四边形,
    ∵四边形ABOC是正方形,
    ∴AC=AB=OC=OB,∠ACE=∠ABD=90°,
    ∵E,D分别是OC,OB的中点,
    ∴CE=BD,
    ∴△CAE≌△ABD(SAS),
    ∴AE=AD,
    ∴四边形AEFD是菱形.

    (2)解:如图1中,连接DE.
    ∵S△ADB=S△ACE=12×8×4=16,
    S△EOD=12×4×4=8,
    ∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,
    ∴S菱形AEFD=2S△AED=48.

    (3)解:如图1中,连接AF,设AF交DE于K,
    ∵OE=OD=4,OK⊥DE,
    ∴KE=KD,
    ∴OK=KE=KD=22,
    ∵AO=82,
    ∴AK=62,
    ∴AK=3DK,
    ①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:
    如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC于M,设AM=t.

    ∵菱形PAQG∽菱形ADFE,
    ∴PH=3AH,
    ∵HN∥OQ,QH=HP,
    ∴ON=NP,
    ∴HN是△PQO的中位线,
    ∴ON=PN=8﹣t,
    ∵∠MAH=∠PHN=90°﹣∠AHM,∠PNH=∠AMH=90°,
    ∴△HMA∽△PNH,
    ∴AMNH=MHPN=AHPH=13,
    ∴HN=3AM=3t,
    ∴MH=MN﹣NH=8﹣3t,
    ∵PN=3MH,
    ∴8﹣t=3(8﹣3t),
    ∴t=2,
    ∴OP=2ON=2(8﹣t)=12,
    ∴P(12,0).
    如图3中,过点H作HI⊥y轴于I,过点P作PN⊥x轴交IH于N,延长BA交IN于M.

    同法可证:△AMH∽△HNP,
    ∴AMHN=MHPN=AHHP=13,设MH=t,
    ∴PN=3MH=3t,
    ∴AM=BM﹣AB=3t﹣8,
    ∵HI是△OPQ的中位线,
    ∴OP=2IH,
    ∴HI=HN,
    ∴8+t=9t﹣24,
    ∴t=4,
    ∴OP=2HI=2(8+t)=24,
    ∴P(24,0).
    ②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:
    如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.

    ∵MH是△QAC的中位线,
    ∴MH=12AC=4,
    同法可得:△HPN∽△QHM,
    ∴NPHM=HNMQ=PHQH=13,
    ∴PN=13HM=43,
    ∴OM=PN=43,设HN=t,则MQ=3t,
    ∵MQ=MC,
    ∴3t=8-43,
    ∴t=209,
    ∴OP=MN=4+t=569,
    ∴点P的坐标为(569,0).

    如图5中,QH=3PH,过点H作HM⊥x轴于M交AC于I,过点Q作QN⊥HM于N.

    ∵IH是△ACQ的中位线,
    ∴CQ=2HI,NQ=CI=4,
    同法可得:△PMH∽△HNQ,
    ∴MHNQ=PMHN=PHHQ=13,则MH=13NQ=43,
    设PM=t,则HN=3t,
    ∵HN=HI,
    ∴3t=8+43,
    ∴t=289,
    ∴OP=OM﹣PM=QN﹣PM=4﹣t=89,
    ∴P(89,0).
    ③如图6中,当AP为菱形的对角线时,有图6一种情形:

    过点H作HM⊥y轴于于点M,交AB于I,过点P作PN⊥HM于N.
    ∵HI∥x轴,AH=HP,
    ∴AI=IB=4,
    ∴PN=IB=4,
    同法可得:△PNH∽△HMQ,
    ∴PNHM=HNMQ=PHHQ=13,
    ∴MH=3PN=12,HI=MH﹣MI=4,
    ∵HI是△ABP的中位线,
    ∴BP=2IH=8,
    ∴OP=OB+BP=16,
    ∴P(16,0),
    综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).

    相关试卷

    专题32 函数与几何综合问题(共25题)--2023年中考数学真题分项汇编(全国通用): 这是一份专题32 函数与几何综合问题(共25题)--2023年中考数学真题分项汇编(全国通用),文件包含函数与几何综合问题共25题解析版pdf、函数与几何综合问题共25题学生版pdf等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。

    专题32 函数与几何综合问题(共10道)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题32 函数与几何综合问题(共10道)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题32函数与几何综合问题共10道原卷版docx、专题32函数与几何综合问题共10道解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    专题20 图形的旋转(共30题)-2023年全国各地中考数学真题分项汇编(全国通用): 这是一份专题20 图形的旋转(共30题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题20图形的旋转共30题原卷版docx、专题20图形的旋转共30题解析版docx等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:0份资料
    • 充值学贝下载 90%的用户选择 本单免费
    • 扫码直接下载
    选择教习网的 4 个理由
    • 更专业

      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿

    • 更丰富

      涵盖课件/教案/试卷/素材等各种教学资源;500万+优选资源 ⽇更新5000+

    • 更便捷

      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤

    • 真低价

      超⾼性价⽐, 让优质资源普惠更多师⽣

    开票申请 联系客服
    本次下载需要:0学贝 0学贝 账户剩余:0学贝
    本次下载需要:0学贝 原价:0学贝 账户剩余:0学贝
    了解VIP特权
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送

        扫码支付后直接下载

        0元

        扫码支付后直接下载

        使用学贝下载资料比扫码直接下载优惠50%
        充值学贝下载,本次下载免费
        了解VIP特权
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付(支持花呗)

        到账0学贝
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付 (支持花呗)

          下载成功

          Ctrl + Shift + J 查看文件保存位置

          若下载不成功,可重新下载,或查看 资料下载帮助

          本资源来自成套资源

          更多精品资料

          正在打包资料,请稍候…

          预计需要约10秒钟,请勿关闭页面

          服务器繁忙,打包失败

          请联系右侧的在线客服解决

          单次下载文件已超2GB,请分批下载

          请单份下载或分批下载

          支付后60天内可免费重复下载

          我知道了
          正在提交订单

          欢迎来到教习网

          • 900万优选资源,让备课更轻松
          • 600万优选试题,支持自由组卷
          • 高质量可编辑,日均更新2000+
          • 百万教师选择,专业更值得信赖
          微信扫码注册
          qrcode
          二维码已过期
          刷新

          微信扫码,快速注册

          还可免费领教师专享福利「樊登读书VIP」

          手机号注册
          手机号码

          手机号格式错误

          手机验证码 获取验证码

          手机验证码已经成功发送,5分钟内有效

          设置密码

          6-20个字符,数字、字母或符号

          注册即视为同意教习网「注册协议」「隐私条款」
          QQ注册
          手机号注册
          微信注册

          注册成功

          下载确认

          下载需要:0 张下载券

          账户可用:0 张下载券

          立即下载

          如何免费获得下载券?

          加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

          即将下载

          专题30函数与几何综合问题(共30题)-2020年中考数学真题分项汇编(解析版)【全国通用】

          该资料来自成套资源,打包下载更省心

          [共10份]
          浏览全套
            立即下载(共1份)
            返回
            顶部