搜索
    上传资料 赚现金
    2023届高考一轮复习讲义(理科)第八章 立体几何 第6讲 空间向量及其运算学案
    立即下载
    加入资料篮
    2023届高考一轮复习讲义(理科)第八章 立体几何    第6讲 空间向量及其运算学案01
    2023届高考一轮复习讲义(理科)第八章 立体几何    第6讲 空间向量及其运算学案02
    2023届高考一轮复习讲义(理科)第八章 立体几何    第6讲 空间向量及其运算学案03
    还剩22页未读, 继续阅读
    下载需要5学贝
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(理科)第八章 立体几何 第6讲 空间向量及其运算学案

    展开
    这是一份2023届高考一轮复习讲义(理科)第八章 立体几何 第6讲 空间向量及其运算学案,共25页。学案主要包含了知识梳理,习题改编等内容,欢迎下载使用。


    一、知识梳理
    1.空间向量的有关定理
    (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在唯一的实数λ,使得a=λb.
    (2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
    (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc.其中{a,b,c}叫做空间的一个基底.
    2.两个向量的数量积(与平面向量基本相同)
    (1)两向量的夹角:已知两个非零向量a,b,在空间中任取一点O,作eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉.通常规定0≤〈a,b〉≤π.若〈a,b〉=eq \f(π,2),则称向量a,b互相垂直,记作a⊥b.
    (2)两向量的数量积
    两个非零向量a,b的数量积a·b=|a||b|cs〈a,b〉.
    (3)向量的数量积的性质
    ①a·e=|a|cs〈a,e〉(其中e为单位向量);
    ②a⊥b⇔a·b=0;
    ③|a|2=a·a=a2;
    ④|a·b|≤|a||b|.
    (4)向量的数量积满足如下运算律
    ①(λa)·b=λ(a·b);
    ②a·b=b·a(交换律);
    ③a·(b+c)=a·b+a·c(分配律).
    3.空间向量的坐标运算
    (1)设a=(a1,a2,a3),b=(b1,b2,b3).
    a+b=(a1+b1,a2+b2,a3+b3),
    a-b=(a1-b1,a2-b2,a3-b3),
    λa=(λa1,λa2,λa3),a·b=a1b1+a2b2+a3b3,
    a⊥b⇔a1b1+a2b2+a3b3=0,
    a∥b⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),
    cs〈a,b〉=eq \f(a·b,|a|·|b|)=eq \f(a1b1+a2b2+a3b3,\r(aeq \\al(2,1)+aeq \\al(2,2)+aeq \\al(2,3))·\r(beq \\al(2,1)+beq \\al(2,2)+beq \\al(2,3))) .
    (2)设A(x1,y1,z1),B(x2,y2,z2),
    则eq \(AB,\s\up6(→))=eq \(OB,\s\up6(→))-eq \(OA,\s\up6(→))=(x2-x1,y2-y1,z2-z1).
    4.直线的方向向量与平面的法向量的确定
    (1)直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称eq \(AB,\s\up6(→))为直线l的方向向量,与eq \(AB,\s\up6(→))平行的任意非零向量也是直线l的方向向量,显然一条直线的方向向量可以有无数个.
    (2)平面的法向量
    ①定义:与平面垂直的向量,称做平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.
    ②确定:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为eq \b\lc\{(\a\vs4\al\c1(n·a=0,,n·b=0.))
    5.空间位置关系的向量表示
    常用结论
    1.向量三点共线定理
    在平面中A,B,C三点共线的充要条件是:eq \(OA,\s\up6(→))=xeq \(OB,\s\up6(→))+yeq \(OC,\s\up6(→))(其中x+y=1),O为平面内任意一点.
    2.向量四点共面定理
    在空间中P,A,B,C四点共面的充要条件是:eq \(OP,\s\up6(→))=xeq \(OA,\s\up6(→))+yeq \(OB,\s\up6(→))+zeq \(OC,\s\up6(→))(其中x+y+z=1),O为空间任意一点.
    二、习题改编
    1.(选修2­1P97A组T2改编)如图所示,在平行六面体ABCD­A1B1C1D1中,M为A1C1与B1D1的交点.若eq \(AB,\s\up6(→))=a,eq \(AD,\s\up6(→))=b,eq \(AA1,\s\up6(→))=c,则eq \(BM,\s\up6(→))=________(用a,b,c表示).
    解析:eq \(BM,\s\up6(→))=eq \(BB1,\s\up6(→))+eq \(B1M,\s\up6(→))=eq \(AA1,\s\up6(→))+eq \f(1,2)(eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→)))=c+eq \f(1,2)(b-a)=-eq \f(1,2)a+eq \f(1,2)b+c.
    答案:-eq \f(1,2)a+eq \f(1,2)b+c
    2.(选修2­1P98A组T3改编)正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长为________.
    解析:|eq \(EF,\s\up6(→))|2=eq \(EF,\s\up6(→))2=(eq \(EC,\s\up6(→))+eq \(CD,\s\up6(→))+eq \(DF,\s\up6(→)))2
    =eq \(EC,\s\up6(→))2+eq \(CD,\s\up6(→))2+eq \(DF,\s\up6(→))2+2(eq \(EC,\s\up6(→))·eq \(CD,\s\up6(→))+eq \(EC,\s\up6(→))·eq \(DF,\s\up6(→))+eq \(CD,\s\up6(→))·eq \(DF,\s\up6(→)))
    =12+22+12+2(1×2×cs 120°+0+2×1×cs 120°)
    =2,
    所以|eq \(EF,\s\up6(→))|=eq \r(2),所以EF的长为eq \r(2).
    答案:eq \r(2)
    3.(选修2­1P111练习T3改编)如图所示,
    在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.
    解析:以D为坐标原点,DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,设DA=2,则A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),所以eq \(AM,\s\up6(→))=(-2,0,1),eq \(ON,\s\up6(→))=(1,0,2),eq \(AM,\s\up6(→))·eq \(ON,\s\up6(→))=-2+0+2=0,所以AM⊥ON.
    答案:垂直
    一、思考辨析
    判断正误(正确的打“√”,错误的打“×”)
    (1)空间中任意两非零向量a,b共面.( )
    (2)在向量的数量积运算中(a·b)·c=a·(b·c).( )
    (3)对于非零向量b,由a·b=b·c,则a=c.( )
    (4)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.( )
    (5)两向量夹角的范围与两异面直线所成角的范围相同.( )
    (6)若A,B,C,D是空间任意四点,则有eq \(AB,\s\up6(→))+eq \(BC,\s\up6(→))+eq \(CD,\s\up6(→))+eq \(DA,\s\up6(→))=0.( )
    答案:(1)√ (2)× (3)× (4)× (5)× (6)√
    二、易错纠偏
    eq \a\vs4\al(常见误区)eq \b\lc\|(\a\vs4\al\c1(K))eq \x(忽视向量共线与共面的区别)
    在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB与CD的位置关系是( )
    A.垂直 B.平行
    C.异面 D.相交但不垂直
    解析:选B.由题意得,eq \(AB,\s\up6(→))=(-3,-3,3),eq \(CD,\s\up6(→))=(1,1,-1),所以eq \(AB,\s\up6(→))=-3eq \(CD,\s\up6(→)),所以eq \(AB,\s\up6(→))与eq \(CD,\s\up6(→))共线,又AB与CD没有公共点,所以AB∥CD.
    空间向量的线性运算(自主练透)
    1.在空间四边形ABCD中,若eq \(AB,\s\up6(→))=(-3,5,2),eq \(CD,\s\up6(→))=(-7,-1,-4),点E,F分别为线段BC,AD的中点,则eq \(EF,\s\up6(→))的坐标为( )
    A.(2,3,3) B.(-2,-3,-3)
    C.(5,-2,1) D.(-5,2,-1)
    解析:选B.因为点E,F分别为线段BC,AD的中点,O为坐标原点,所以eq \(EF,\s\up6(→))=eq \(OF,\s\up6(→))-eq \(OE,\s\up6(→)),eq \(OF,\s\up6(→))=eq \f(1,2)(eq \(OA,\s\up6(→))+eq \(OD,\s\up6(→))),eq \(OE,\s\up6(→))=eq \f(1,2)(eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→))).
    所以eq \(EF,\s\up6(→))=eq \f(1,2)(eq \(OA,\s\up6(→))+eq \(OD,\s\up6(→)))-eq \f(1,2)(eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→)))=eq \f(1,2)(eq \(BA,\s\up6(→))+eq \(CD,\s\up6(→)))
    =eq \f(1,2)[(3,-5,-2)+(-7,-1,-4)]
    =eq \f(1,2)(-4,-6,-6)=(-2,-3,-3).
    2.在三棱锥O­ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量eq \(OA,\s\up6(→)),eq \(OB,\s\up6(→)),eq \(OC,\s\up6(→))表示(1)eq \(MG,\s\up6(→));(2)eq \(OG,\s\up6(→)).
    解:(1)eq \(MG,\s\up6(→))=eq \(MA,\s\up6(→))+eq \(AG,\s\up6(→))
    =eq \f(1,2)eq \(OA,\s\up6(→))+eq \f(2,3)eq \(AN,\s\up6(→))
    =eq \f(1,2)eq \(OA,\s\up6(→))+eq \f(2,3)(eq \(ON,\s\up6(→))-eq \(OA,\s\up6(→)))
    =eq \f(1,2)eq \(OA,\s\up6(→))+eq \f(2,3)[eq \f(1,2)(eq \(OB,\s\up6(→))+eq \(OC,\s\up6(→)))-eq \(OA,\s\up6(→))]
    =-eq \f(1,6)eq \(OA,\s\up6(→))+eq \f(1,3)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→)).
    (2)eq \(OG,\s\up6(→))=eq \(OM,\s\up6(→))+eq \(MG,\s\up6(→))
    =eq \f(1,2)eq \(OA,\s\up6(→))-eq \f(1,6)eq \(OA,\s\up6(→))+eq \f(1,3)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→))
    =eq \f(1,3)eq \(OA,\s\up6(→))+eq \f(1,3)eq \(OB,\s\up6(→))+eq \f(1,3)eq \(OC,\s\up6(→)).
    3.如图所示,在平行六面体ABCD­A1B1C1D1中,设eq \(AA1,\s\up6(→))=a,eq \(AB,\s\up6(→))=b,eq \(AD,\s\up6(→))=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
    (1)eq \(AP,\s\up6(→));(2)eq \(A1N,\s\up6(→));(3)eq \(MP,\s\up6(→))+eq \(NC1,\s\up6(→)).
    解:(1)因为P是C1D1的中点,
    所以eq \(AP,\s\up6(→))=eq \(AA1,\s\up6(→))+eq \(A1D1,\s\up6(→))+eq \(D1P,\s\up6(→))=a+eq \(AD,\s\up6(→))+eq \f(1,2)eq \(D1C1,\s\up6(→))
    =a+c+eq \f(1,2)eq \(AB,\s\up6(→))=a+c+eq \f(1,2)b.
    (2)因为N是BC的中点,
    所以eq \(A1N,\s\up6(→))=eq \(A1A,\s\up6(→))+eq \(AB,\s\up6(→))+eq \(BN,\s\up6(→))=-a+b+eq \f(1,2)eq \(BC,\s\up6(→))
    =-a+b+eq \f(1,2)eq \(AD,\s\up6(→))=-a+b+eq \f(1,2)c.
    (3)因为M是AA1的中点,
    所以eq \(MP,\s\up6(→))=eq \(MA,\s\up6(→))+eq \(AP,\s\up6(→))=eq \f(1,2)eq \(A1A,\s\up6(→))+eq \(AP,\s\up6(→))
    =-eq \f(1,2)a+eq \b\lc\(\rc\)(\a\vs4\al\c1(a+c+\f(1,2)b))
    =eq \f(1,2)a+eq \f(1,2)b+c,
    又eq \(NC1,\s\up6(→))=eq \(NC,\s\up6(→))+eq \(CC1,\s\up6(→))=eq \f(1,2)eq \(BC,\s\up6(→))+eq \(AA1,\s\up6(→))
    =eq \f(1,2)eq \(AD,\s\up6(→))+eq \(AA1,\s\up6(→))=eq \f(1,2)c+a,
    所以eq \(MP,\s\up6(→))+eq \(NC1,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)a+\f(1,2)b+c))+eq \b\lc\(\rc\)(\a\vs4\al\c1(a+\f(1,2)c))
    =eq \f(3,2)a+eq \f(1,2)b+eq \f(3,2)c.
    eq \a\vs4\al()
    用已知向量表示未知向量的解题策略
    (1)用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.
    (2)要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.
    (3)在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间仍然成立.
    共线、共面向量定理的应用(师生共研)
    如图所示,已知斜三棱柱ABC­A1B1C1,点M,N分别在AC1和BC上,且满足eq \(AM,\s\up6(→))=keq \(AC1,\s\up6(→)),eq \(BN,\s\up6(→))=keq \(BC,\s\up6(→))(0≤k≤1).
    (1)向量eq \(MN,\s\up6(→))是否与向量eq \(AB,\s\up6(→)),eq \(AA1,\s\up6(→))共面?
    (2)直线MN是否与平面ABB1A1平行?
    【解】 (1)因为eq \(AM,\s\up6(→))=keq \(AC1,\s\up6(→)),eq \(BN,\s\up6(→))=keq \(BC,\s\up6(→)),
    所以eq \(MN,\s\up6(→))=eq \(MA,\s\up6(→))+eq \(AB,\s\up6(→))+eq \(BN,\s\up6(→))
    =keq \(C1A,\s\up6(→))+eq \(AB,\s\up6(→))+keq \(BC,\s\up6(→))
    =k(eq \(C1A,\s\up6(→))+eq \(BC,\s\up6(→)))+eq \(AB,\s\up6(→))
    =k(eq \(C1A,\s\up6(→))+eq \(B1C1,\s\up6(→)))+eq \(AB,\s\up6(→))
    =keq \(B1A,\s\up6(→))+eq \(AB,\s\up6(→))
    =eq \(AB,\s\up6(→))-keq \(AB1,\s\up6(→))=eq \(AB,\s\up6(→))-k(eq \(AA1,\s\up6(→))+eq \(AB,\s\up6(→)))
    =(1-k)eq \(AB,\s\up6(→))-keq \(AA1,\s\up6(→)),
    所以由共面向量定理知向量eq \(MN,\s\up6(→))与向量eq \(AB,\s\up6(→)),eq \(AA1,\s\up6(→))共面.
    (2)当k=0时,点M,A重合,点N,B重合,
    MN在平面ABB1A1内,当0MN不在平面ABB1A1内,
    又由(1)知eq \(MN,\s\up6(→))与eq \(AB,\s\up6(→)),eq \(AA1,\s\up6(→))共面,
    所以MN∥平面ABB1A1.
    eq \a\vs4\al()

    1.已知a=(λ+1,0,2),b=(6,2μ-1,2λ),若a∥b,则λ与μ的值可以是( )
    A.2,eq \f(1,2) B.-eq \f(1,3),eq \f(1,2)
    C.-3,2 D.2,2
    解析:选A.因为a∥b,所以b=ka,即(6,2μ-1,2λ)=k(λ+1,0,2),所以eq \b\lc\{(\a\vs4\al\c1(6=k(λ+1),,2μ-1=0,,2λ=2k,))解得eq \b\lc\{(\a\vs4\al\c1(λ=2,,μ=\f(1,2)))或eq \b\lc\{(\a\vs4\al\c1(λ=-3,,μ=\f(1,2).))
    2.若A(-1,2,3),B(2,1,4),C(m,n,1)三点共线,则m+n=________.
    解析:eq \(AB,\s\up6(→))=(3,-1,1),eq \(AC,\s\up6(→))=(m+1,n-2,-2).
    因为A,B,C三点共线,所以存在实数λ,使得eq \(AC,\s\up6(→))=λeq \(AB,\s\up6(→)).
    即(m+1,n-2,-2)=λ(3,-1,1)=(3λ,-λ,λ),
    所以eq \b\lc\{(\a\vs4\al\c1(m+1=3λ,n-2=-λ,-2=λ)),解得λ=-2,m=-7,n=4.所以m+n=-3.
    答案:-3
    3.如图,在四棱柱ABCD­A1B1C1D1中,底面ABCD是平行四边形,E,F,G分别是A1D1,D1D,D1C1的中点.
    (1)试用向量eq \(AB,\s\up6(→)),eq \(AD,\s\up6(→)),eq \(AA1,\s\up6(→))表示eq \(AG,\s\up6(→));
    (2)用向量方法证明平面EFG∥平面AB1C.
    解:(1)设eq \(AB,\s\up6(→))=a,eq \(AD,\s\up6(→))=b,eq \(AA1,\s\up6(→))=c.
    由题图得eq \(AG,\s\up6(→))=eq \(AA1,\s\up6(→))+eq \(A1D1,\s\up6(→))+eq \(D1G,\s\up6(→))
    =c+b+eq \f(1,2)eq \(AB,\s\up6(→))
    =eq \f(1,2)a+b+c
    =eq \f(1,2)eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→))+eq \(AA1,\s\up6(→)).
    (2)证明:由题图,得eq \(AC,\s\up6(→))=eq \(AB,\s\up6(→))+eq \(BC,\s\up6(→))=a+b,
    eq \(EG,\s\up6(→))=eq \(ED1,\s\up6(→))+eq \(D1G,\s\up6(→))=eq \f(1,2)b+eq \f(1,2)a=eq \f(1,2)eq \(AC,\s\up6(→)),
    因为EG与AC无公共点,
    所以EG∥AC,因为EG⊄平面AB1C,AC⊂平面AB1C,
    所以EG∥平面AB1C.
    又因为eq \(AB1,\s\up6(→))=eq \(AB,\s\up6(→))+eq \(BB1,\s\up6(→))=a+c,
    eq \(FG,\s\up6(→))=eq \(FD1,\s\up6(→))+eq \(D1G,\s\up6(→))=eq \f(1,2)c+eq \f(1,2)a=eq \f(1,2)eq \(AB1,\s\up6(→)),
    因为FG与AB1无公共点,所以FG∥AB1,
    因为FG⊄平面AB1C,AB1⊂平面AB1C,
    所以FG∥平面AB1C,
    又因为FG∩EG=G,FG,EG⊂平面EFG,
    所以平面EFG∥平面AB1C.
    空间向量数量积的应用(典例迁移)
    如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:
    (1)eq \(EF,\s\up6(→))·eq \(BA,\s\up6(→));(2)eq \(EG,\s\up6(→))·eq \(BD,\s\up6(→)).
    【解】 设eq \(AB,\s\up6(→))=a,eq \(AC,\s\up6(→))=b,eq \(AD,\s\up6(→))=c.
    则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
    (1)eq \(EF,\s\up6(→))=eq \f(1,2)eq \(BD,\s\up6(→))=eq \f(1,2)c-eq \f(1,2)a,eq \(BA,\s\up6(→))=-a,
    eq \(EF,\s\up6(→))·eq \(BA,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)c-\f(1,2)a))·(-a)=eq \f(1,2)a2-eq \f(1,2)a·c=eq \f(1,4).
    (2)eq \(EG,\s\up6(→))·eq \(BD,\s\up6(→))=(eq \(EA,\s\up6(→))+eq \(AD,\s\up6(→))+eq \(DG,\s\up6(→)))·(eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→)))
    =eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)\(AB,\s\up6(→))+\(AD,\s\up6(→))+\(AG,\s\up6(→))-\(AD,\s\up6(→))))·(eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→)))
    =eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)\(AB,\s\up6(→))+\f(1,2)\(AC,\s\up6(→))+\f(1,2)\(AD,\s\up6(→))))·(eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→)))
    =eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)a+\f(1,2)b+\f(1,2)c))·(c-a)
    =eq \f(1,2)(-1×1×eq \f(1,2)+1×1×eq \f(1,2)+1+1-1×1×eq \f(1,2)-1×1×eq \f(1,2))
    =eq \f(1,2).
    【迁移探究1】 (变问法)在本例条件下,求证EG⊥AB.
    证明:由例题知eq \(EG,\s\up6(→))=eq \f(1,2)(eq \(AC,\s\up6(→))+eq \(AD,\s\up6(→))-eq \(AB,\s\up6(→)))=eq \f(1,2)(b+c-a),
    所以eq \(EG,\s\up6(→))·eq \(AB,\s\up6(→))=eq \f(1,2)(a·b+a·c-a2)
    =eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(1×1×\f(1,2)+1×1×\f(1,2)-1))=0.
    故eq \(EG,\s\up6(→))⊥eq \(AB,\s\up6(→)),即EG⊥AB.
    【迁移探究2】 (变问法)在本例条件下,求EG的长.
    解:由例题知eq \(EG,\s\up6(→))=-eq \f(1,2)a+eq \f(1,2)b+eq \f(1,2)c,
    |eq \(EG,\s\up6(→))|2=eq \f(1,4)a2+eq \f(1,4)b2+eq \f(1,4)c2-eq \f(1,2)a·b+eq \f(1,2)b·c-eq \f(1,2)c·a=eq \f(1,2),则|eq \(EG,\s\up6(→))|=eq \f(\r(2),2),即EG的长为eq \f(\r(2),2).
    【迁移探究3】 (变问法)在本例条件下,求异面直线AG与CE所成角的余弦值.
    解:由例题知eq \(AG,\s\up6(→))=eq \f(1,2)b+eq \f(1,2)c,eq \(CE,\s\up6(→))=eq \(CA,\s\up6(→))+eq \(AE,\s\up6(→))=-b+eq \f(1,2)a,
    cs〈eq \(AG,\s\up6(→)),eq \(CE,\s\up6(→))〉=eq \f(\(AG,\s\up6(→))·\(CE,\s\up6(→)),|\(AG,\s\up6(→))||\(CE,\s\up6(→))|)=-eq \f(2,3),
    由于异面直线所成角的范围是eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(π,2))).
    所以异面直线AG与CE所成角的余弦值为eq \f(2,3).
    eq \a\vs4\al()
    空间向量数量积的三个应用

    三棱柱ABC­A1B1C1中,M,N分别是A1B,B1C1上的点,且BM=2A1M,C1N=2B1N.设eq \(AB,\s\up6(→))=a,eq \(AC,\s\up6(→))=b,eq \(AA1,\s\up6(→))=c.
    (1)试用a,b,c表示向量eq \(MN,\s\up6(→));
    (2)若∠BAC=90°,∠BAA1=∠CAA1=60°,AB=AC=AA1=1,求MN的长.
    解:(1)由题图知
    eq \(MN,\s\up6(→))=eq \(MA1,\s\up6(→))+eq \(A1B1,\s\up6(→))+eq \(B1N,\s\up6(→))=eq \f(1,3)eq \(BA1,\s\up6(→))+eq \(AB,\s\up6(→))+eq \f(1,3)eq \(B1C1,\s\up6(→))
    =eq \f(1,3)(c-a)+a+eq \f(1,3)(b-a)=eq \f(1,3)a+eq \f(1,3)b+eq \f(1,3)c.
    (2)由题设条件知,
    因为(a+b+c)2=a2+b2+c2+2a·b+2b·c+2a·c
    =1+1+1+0+2×1×1×eq \f(1,2)+2×1×1×eq \f(1,2)=5,
    所以|a+b+c|=eq \r(5),|eq \(MN,\s\up6(→))|=eq \f(1,3)|a+b+c|=eq \f(\r(5),3).
    利用向量证明平行与垂直问题(多维探究)
    角度一 证明平行问题
    (一题多解)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:
    (1)PB∥平面EFG;
    (2)平面EFG∥平面PBC.
    【证明】 (1)因为平面PAD⊥平面ABCD,且ABCD为正方形,所以AB,AP,AD两两垂直.
    以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).
    法一:eq \(EF,\s\up6(→))=(0,1,0),eq \(EG,\s\up6(→))=(1,2,-1),
    设平面EFG的法向量为n=(x,y,z),
    则eq \b\lc\{(\a\vs4\al\c1(n·\(EF,\s\up6(→))=0,,n·\(EG,\s\up6(→))=0,))即eq \b\lc\{(\a\vs4\al\c1(y=0,,x+2y-z=0,))
    令z=1,则n=(1,0,1)为平面EFG的一个法向量,
    因为eq \(PB,\s\up6(→))=(2,0,-2),
    所以eq \(PB,\s\up6(→))·n=0,所以n⊥eq \(PB,\s\up6(→)),
    因为PB⊄平面EFG,所以PB∥平面EFG.
    法二:eq \(PB,\s\up6(→))=(2,0,-2),eq \(FE,\s\up6(→))=(0,-1,0),eq \(FG,\s\up6(→))=(1,1,-1).
    设eq \(PB,\s\up6(→))=seq \(FE,\s\up6(→))+teq \(FG,\s\up6(→)),
    即(2,0,-2)=s(0,-1,0)+t(1,1,-1),
    所以eq \b\lc\{(\a\vs4\al\c1(t=2,,t-s=0,,-t=-2,))解得s=t=2.所以eq \(PB,\s\up6(→))=2eq \(FE,\s\up6(→))+2eq \(FG,\s\up6(→)),
    又因为eq \(FE,\s\up6(→))与eq \(FG,\s\up6(→))不共线,所以eq \(PB,\s\up6(→)),eq \(FE,\s\up6(→))与eq \(FG,\s\up6(→))共面.
    因为PB⊄平面EFG,所以PB∥平面EFG.
    (2)因为eq \(EF,\s\up6(→))=(0,1,0),eq \(BC,\s\up6(→))=(0,2,0),
    所以eq \(BC,\s\up6(→))=2eq \(EF,\s\up6(→)),
    所以BC∥EF.
    又因为EF⊄平面PBC,BC⊂平面PBC,
    所以EF∥平面PBC,
    同理可证GF∥PC,从而得出GF∥平面PBC.
    又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,
    所以平面EFG∥平面PBC.
    角度二 证明垂直问题
    如图,在三棱锥P­ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.
    (1)证明:AP⊥BC;
    (2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.
    【证明】 (1)如图所示,以O为坐标原点,以射线DB方向为x轴正方向,射线OD为y轴正半轴,射线OP为z轴的正半轴建立空间直角坐标系Oxyz.
    则O(0,0,0),A(0,-3,0),
    B(4,2,0),C(-4,2,0),P(0,0,4).
    于是eq \(AP,\s\up6(→))=(0,3,4),eq \(BC,\s\up6(→))=(-8,0,0),
    所以eq \(AP,\s\up6(→))·eq \(BC,\s\up6(→))=(0,3,4)·(-8,0,0)=0,
    所以eq \(AP,\s\up6(→))⊥eq \(BC,\s\up6(→)),即AP⊥BC.
    (2)由(1)知AP=5,又AM=3,且点M在线段AP上,
    所以eq \(AM,\s\up6(→))=eq \f(3,5)eq \(AP,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(9,5),\f(12,5))),又eq \(BA,\s\up6(→))=(-4,-5,0),
    所以eq \(BM,\s\up6(→))=eq \(BA,\s\up6(→))+eq \(AM,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(-4,-\f(16,5),\f(12,5))),
    则eq \(AP,\s\up6(→))·eq \(BM,\s\up6(→))=(0,3,4)·eq \b\lc\(\rc\)(\a\vs4\al\c1(-4,-\f(16,5),\f(12,5)))=0,
    所以eq \(AP,\s\up6(→))⊥eq \(BM,\s\up6(→)),即AP⊥BM,
    又根据(1)的结论知AP⊥BC,
    所以AP⊥平面BMC,于是AM⊥平面BMC.
    又AM⊂平面AMC,故平面AMC⊥平面BMC.
    eq \a\vs4\al()
    (1)利用空间向量解决平行、垂直问题的一般步骤
    ①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系;
    ②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;
    ③通过空间向量的坐标运算研究平行、垂直关系;
    ④根据运算结果解释相关问题.
    (2)空间线面位置关系的坐标表示
    设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),平面α,β的法向量分别为u=(a3,b3,c3),v=(a4,b4,c4).
    ①线线平行
    l∥m⇔a∥b⇔a=kb⇔a1=ka2,b1=kb2,c1=kc2.
    ②线线垂直
    l⊥m⇔a⊥b⇔a·b=0⇔a1a2+b1b2+c1c2=0.
    ③线面平行(l⊄α)
    l∥α⇔a⊥u⇔a·u=0⇔a1a3+b1b3+c1c3=0.
    ④线面垂直
    l⊥α⇔a∥u⇔a=ku⇔a1=ka3,b1=kb3,c1=kc3.
    ⑤面面平行
    α∥β⇔u∥v⇔u=kv⇔a3=ka4,b3=kb4,c3=kc4.
    ⑥面面垂直
    α⊥β⇔u⊥v⇔u·v=0⇔a3a4+b3b4+c3c4=0.
    如图所示,四棱柱ABCD­A1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60°.
    (1)求AC1的长;
    (2)求证: AC1⊥BD;
    (3)求BD1与AC夹角的余弦值.
    解:(1)记eq \(AB,\s\up6(→))=a,eq \(AD,\s\up6(→))=b,eq \(AA1,\s\up6(→))=c,
    则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
    所以a·b=b·c=c·a=eq \f(1,2).
    |eq \(AC1,\s\up6(→))|2=(a+b+c)2=a2+b2+c2+2(a·b+b·c+c·a)
    =1+1+1+2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)+\f(1,2)+\f(1,2)))=6,
    所以|eq \(AC1,\s\up6(→))|=eq \r(6),即AC1的长为eq \r(6).
    (2)证明:因为eq \(AC1,\s\up6(→))=a+b+c,eq \(BD,\s\up6(→))=b-a,
    所以eq \(AC1,\s\up6(→))·eq \(BD,\s\up6(→))=(a+b+c)·(b-a)
    =a·b+|b|2+b·c-|a|2-a·b-a·c
    =b·c-a·c
    =|b||c|cs 60°-|a||c|cs 60°=0.
    所以eq \(AC1,\s\up6(→))⊥eq \(BD,\s\up6(→)),所以AC1⊥BD.
    (3)eq \(BD1,\s\up6(→))=b+c-a,eq \(AC,\s\up6(→))=a+b,
    所以|eq \(BD1,\s\up6(→))|=eq \r(2),|eq \(AC,\s\up6(→))|=eq \r(3),
    eq \(BD1,\s\up6(→))·eq \(AC,\s\up6(→))=(b+c-a)·(a+b)
    =b2-a2+a·c+b·c=1.
    所以cs〈eq \(BD1,\s\up6(→)),eq \(AC,\s\up6(→))〉=eq \f(\(BD1,\s\up6(→))·\(AC,\s\up6(→)),|\(BD1,\s\up6(→))||\(AC,\s\up6(→))|)=eq \f(\r(6),6).
    所以AC与BD1夹角的余弦值为eq \f(\r(6),6).
    [基础题组练]
    1.已知三棱锥O­ABC,点M,N分别为AB,OC的中点,且eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,用a,b,c表示eq \(MN,\s\up6(→)),则eq \(MN,\s\up6(→))等于( )
    A.eq \f(1,2)(b+c-a)
    B.eq \f(1,2)(a+b+c)
    C.eq \f(1,2)(a-b+c)
    D.eq \f(1,2)(c-a-b)
    解析:选D.eq \(MN,\s\up6(→))=eq \(MA,\s\up6(→))+eq \(AO,\s\up6(→))+eq \(ON,\s\up6(→))=eq \f(1,2)(c-a-b).
    2.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=( )
    A.9 B.-9
    C.-3 D.3
    解析:选B.由题意知c=xa+yb,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),所以eq \b\lc\{(\a\vs4\al\c1(2x-y=7,,x+2y=6,,-3x+3y=λ,))解得λ=-9.
    3.在空间四边形ABCD中,eq \(AB,\s\up6(→))·eq \(CD,\s\up6(→))+eq \(AC,\s\up6(→))·eq \(DB,\s\up6(→))+eq \(AD,\s\up6(→))·eq \(BC,\s\up6(→))=( )
    A.-1 B.0
    C.1 D.不确定
    解析:选B.如图,
    令eq \(AB,\s\up6(→))=a,eq \(AC,\s\up6(→))=b,eq \(AD,\s\up6(→))=c,
    则eq \(AB,\s\up6(→))·eq \(CD,\s\up6(→))+eq \(AC,\s\up6(→))·eq \(DB,\s\up6(→))+eq \(AD,\s\up6(→))·eq \(BC,\s\up6(→))=a·(c-b)+b·(a-c)+c·(b-a)=a·c-a·b+b·a-b·c+c·b-c·a=0.
    4.如图,在大小为45°的二面角A­EF­D中,四边形ABFE,四边形CDEF都是边长为1的正方形,则B,D两点间的距离是( )
    A.eq \r(3) B.eq \r(2)
    C.1 D.eq \r(3-\r(2))
    解析:选D.因为eq \(BD,\s\up6(→))=eq \(BF,\s\up6(→))+eq \(FE,\s\up6(→))+eq \(ED,\s\up6(→)),所以|eq \(BD,\s\up6(→))|2=|eq \(BF,\s\up6(→))|2+|eq \(FE,\s\up6(→))|2+|eq \(ED,\s\up6(→))|2+2eq \(BF,\s\up6(→))·eq \(FE,\s\up6(→))+2eq \(FE,\s\up6(→))·eq \(ED,\s\up6(→))+2eq \(BF,\s\up6(→))·eq \(ED,\s\up6(→))=1+1+1-eq \r(2)=3-eq \r(2),所以|eq \(BD,\s\up6(→))|=eq \r(3-\r(2)).
    5.已知A(1,0,0),B(0,-1,1),O为坐标原点,eq \(OA,\s\up6(→))+λeq \(OB,\s\up6(→))与eq \(OB,\s\up6(→))的夹角为120°,则λ的值为( )
    A.±eq \f(\r(6),6) B.eq \f(\r(6),6)
    C.-eq \f(\r(6),6) D.±eq \r(6)
    解析:选C.eq \(OA,\s\up6(→))+λeq \(OB,\s\up6(→))=(1,-λ,λ),cs 120°=eq \f(λ+λ,\r(1+2λ2)·\r(2))=-eq \f(1,2),得λ=±eq \f(\r(6),6).经检验λ=eq \f(\r(6),6)不合题意,舍去,所以λ=-eq \f(\r(6),6).
    6.如图所示,在长方体ABCD­A1B1C1D1中,O为AC的中点.用eq \(AB,\s\up6(→)),eq \(AD,\s\up6(→)),eq \(AA1,\s\up6(→))表示eq \(OC1,\s\up6(→)),则eq \(OC1,\s\up6(→))=________.
    解析:因为eq \(OC,\s\up6(→))=eq \f(1,2)eq \(AC,\s\up6(→))
    =eq \f(1,2)(eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→))),
    所以eq \(OC1,\s\up6(→))=eq \(OC,\s\up6(→))+eq \(CC1,\s\up6(→))=eq \f(1,2)(eq \(AB,\s\up6(→))+eq \(AD,\s\up6(→)))+eq \(AA1,\s\up6(→))=eq \f(1,2)eq \(AB,\s\up6(→))+eq \f(1,2)eq \(AD,\s\up6(→))+eq \(AA1,\s\up6(→)).
    答案:eq \f(1,2)eq \(AB,\s\up6(→))+eq \f(1,2)eq \(AD,\s\up6(→))+eq \(AA1,\s\up6(→))
    7.已知PA垂直于正方形ABCD所在的平面,M,N分别是CD,PC的中点,并且PA=AD=1.在如图所示的空间直角坐标系中,则MN=________.
    解析:连接PD,因为M,N分别为CD,PC的中点,所以MN=eq \f(1,2)PD,又P(0,0,1),D(0,1,0),
    所以PD=eq \r(02+(-1)2+12)=eq \r(2),所以MN=eq \f(\r(2),2).
    答案:eq \f(\r(2),2)
    8.如图所示,已知空间四边形OABC,OB=OC,且∠AOB=∠AOC=eq \f(π,3),则cs〈eq \(OA,\s\up6(→)),eq \(BC,\s\up6(→))〉的值为________.
    解析:设eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,
    由已知条件得〈a,b〉=〈a,c〉=eq \f(π,3),且|b|=|c|,
    eq \(OA,\s\up6(→))·eq \(BC,\s\up6(→))=a·(c-b)=a·c-a·b
    =eq \f(1,2)|a||c|-eq \f(1,2)|a||b|=0,
    所以eq \(OA,\s\up6(→))⊥eq \(BC,\s\up6(→)),
    所以cs〈eq \(OA,\s\up6(→)),eq \(BC,\s\up6(→))〉=0.
    答案:0
    9.如图,在多面体ABC­A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=eq \r(2)AB,B1C1綊eq \f(1,2)BC,二面角A1­AB­C是直二面角.
    求证:(1)A1B1⊥平面AA1C;
    (2)AB1∥平面A1C1C.
    证明:因为二面角A1­AB­C是直二面角,
    四边形A1ABB1为正方形,
    所以AA1⊥平面BAC.
    又因为AB=AC,BC=eq \r(2)AB,
    所以∠CAB=90°,
    即CA⊥AB,
    所以AB,AC,AA1两两互相垂直.
    建立如图所示的空间直角坐标系Axyz,
    设AB=2,则A(0,0,0),B1(0,2,2),A1(0,0,2),C(2,0,0),C1(1,1,2).
    (1)eq \(A1B1,\s\up6(→))=(0,2,0),eq \(A1A,\s\up6(→))=(0,0,-2),eq \(AC,\s\up6(→))=(2,0,0),
    设平面AA1C的一个法向量n=(x,y,z),
    则eq \b\lc\{(\a\vs4\al\c1(n·\(A1A,\s\up6(→))=0,,n·\(AC,\s\up6(→))=0,))即eq \b\lc\{(\a\vs4\al\c1(-2z=0,,2x=0,))
    即eq \b\lc\{(\a\vs4\al\c1(x=0,,z=0,))取y=1,则n=(0,1,0).
    所以eq \(A1B1,\s\up6(→))=2n,
    即eq \(A1B1,\s\up6(→))∥n.
    所以A1B1⊥平面AA1C.
    (2)易知eq \(AB1,\s\up6(→))=(0,2,2),eq \(A1C1,\s\up6(→))=(1,1,0),eq \(A1C,\s\up6(→))=(2,0,-2),
    设平面A1C1C的一个法向量m=(x1,y1,z1),
    则eq \b\lc\{(\a\vs4\al\c1(m·\(A1C1,\s\up6(→))=0,,m·\(A1C,\s\up6(→))=0,))即eq \b\lc\{(\a\vs4\al\c1(x1+y1=0,,2x1-2z1=0,))
    令x1=1,则y1=-1,z1=1,
    即m=(1,-1,1).
    所以eq \(AB1,\s\up6(→))·m=0×1+2×(-1)+2×1=0,
    所以eq \(AB1,\s\up6(→))⊥m,
    又AB1⊄平面A1C1C,
    所以AB1∥平面A1C1C.
    10.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E,F分别是PC,PD的中点,PA=AB=1,BC=2.求证:
    (1)EF∥平面PAB;
    (2)平面PAD⊥平面PDC.
    证明:以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴,建立如图所示的空间直角
    坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),
    所以Eeq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),1,\f(1,2))),
    Feq \b\lc\(\rc\)(\a\vs4\al\c1(0,1,\f(1,2))),eq \(EF,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2),0,0)),eq \(PB,\s\up6(→))=(1,0,-1),eq \(PD,\s\up6(→))=(0,2,-1),eq \(AP,\s\up6(→))=(0,0,1),eq \(AD,\s\up6(→))=(0,2,0),eq \(DC,\s\up6(→))=(1,0,0),eq \(AB,\s\up6(→))=(1,0,0).
    (1)因为eq \(EF,\s\up6(→))=-eq \f(1,2)eq \(AB,\s\up6(→)),所以eq \(EF,\s\up6(→))∥eq \(AB,\s\up6(→)),即EF∥AB.
    又AB⊂平面PAB,EF⊂/ 平面PAB,
    所以EF∥平面PAB.
    (2)因为eq \(AP,\s\up6(→))·eq \(DC,\s\up6(→))=(0,0,1)·(1,0,0)=0,
    所以eq \(AP,\s\up6(→))⊥eq \(DC,\s\up6(→)),eq \(AD,\s\up6(→))⊥eq \(DC,\s\up6(→)),
    即AP⊥DC,AD⊥DC.
    又AP∩AD=A,所以DC⊥平面PAD.
    所以平面PAD⊥平面PDC.
    [综合题组练]
    1.已知空间任意一点O和不共线的三点A,B,C,若eq \(OP,\s\up6(→))=xeq \(OA,\s\up6(→))+yeq \(OB,\s\up6(→))+zeq \(OC,\s\up6(→))(x,y,z∈R),则“x=2,y=-3,z=2”是“P,A,B,C四点共面”的( )
    A.必要不充分条件 B.充分不必要条件
    C.充要条件 D.既不充分也不必要条件
    解析:选B.当x=2,y=-3,z=2时,即eq \(OP,\s\up6(→))=2eq \(OA,\s\up6(→))-3eq \(OB,\s\up6(→))+2eq \(OC,\s\up6(→)).则eq \(AP,\s\up6(→))-eq \(AO,\s\up6(→))=2eq \(OA,\s\up6(→))-3(eq \(AB,\s\up6(→))-eq \(AO,\s\up6(→)))+2(eq \(AC,\s\up6(→))-eq \(AO,\s\up6(→))),即eq \(AP,\s\up6(→))=-3eq \(AB,\s\up6(→))+2eq \(AC,\s\up6(→)),根据共面向量定理知,P,A,B,C四点共面;反之,当P,A,B,C四点共面时,根据共面向量定理,设eq \(AP,\s\up6(→))=meq \(AB,\s\up6(→))+neq \(AC,\s\up6(→))(m,n∈R),即eq \(OP,\s\up6(→))-eq \(OA,\s\up6(→))=m(eq \(OB,\s\up6(→))-eq \(OA,\s\up6(→)))+n(eq \(OC,\s\up6(→))-eq \(OA,\s\up6(→))),即eq \(OP,\s\up6(→))=(1-m-n)eq \(OA,\s\up6(→))+meq \(OB,\s\up6(→))+neq \(OC,\s\up6(→)),即x=1-m-n,y=m,z=n,这组数显然不止2,-3,2.故“x=2,y=-3,z=2”是“P,A,B,C四点共面”的充分不必要条件.
    2.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB=eq \r(2),AF=1,M在EF上,且AM∥平面BDE,则M点的坐标为( )
    A.(1,1,1)
    B.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),3),\f(\r(2),3),1))
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),\f(\r(2),2),1))
    D.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),4),\f(\r(2),4),1))
    解析:选C.设M点的坐标为(x,y,1),因为AC∩BD=O,所以Oeq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),\f(\r(2),2),0)),
    又E(0,0,1),A(eq \r(2),eq \r(2),0),
    所以eq \(OE,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(\r(2),2),-\f(\r(2),2),1)),eq \(AM,\s\up6(→))=(x-eq \r(2),y-eq \r(2),1),
    因为AM∥平面BDE,所以eq \(OE,\s\up6(→))∥eq \(AM,\s\up6(→)),
    所以eq \b\lc\{(\a\vs4\al\c1(x-\r(2)=-\f(\r(2),2),,y-\r(2)=-\f(\r(2),2),))⇒eq \b\lc\{(\a\vs4\al\c1(x=\f(\r(2),2),,y=\f(\r(2),2),))
    所以M点的坐标为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),\f(\r(2),2),1)).
    3.如图,在正四棱柱ABCD­A1B1C1D1中,AA1=2,AB=BC=1,动点P,Q分别在线段C1D,AC上,则线段PQ长度的最小值是( )
    A.eq \f(\r(2),3) B.eq \f(\r(3),3)
    C.eq \f(2,3) D.eq \f(\r(5),3)
    解析:选C.设eq \(DP,\s\up6(→))=λeq \(DC1,\s\up6(→)),eq \(AQ,\s\up6(→))=μeq \(AC,\s\up6(→)),(λ,μ∈[0,1]).
    所以eq \(DP,\s\up6(→))=λ(0,1,2)=(0,λ,2λ),
    eq \(DQ,\s\up6(→))=eq \(DA,\s\up6(→))+μ(eq \(DC,\s\up6(→))-eq \(DA,\s\up6(→)))=(1,0,0)+μ(-1,1,0)=(1-μ,μ,0).
    所以|eq \(PQ,\s\up6(→))|=|eq \(DQ,\s\up6(→))-eq \(DP,\s\up6(→))|=|(1-μ,μ-λ,-2λ)|
    =eq \r((1-μ)2+(μ-λ)2+4λ2)
    =eq \r(5\b\lc\(\rc\)(\a\vs4\al\c1(λ-\f(μ,5)))\s\up12(2)+\f(9,5)\b\lc\(\rc\)(\a\vs4\al\c1(μ-\f(5,9)))\s\up12(2)+\f(4,9))≥eq \r(\f(4,9))=eq \f(2,3),
    当且仅当λ=eq \f(μ,5),μ=eq \f(5,9),即λ=eq \f(1,9),μ=eq \f(5,9)时取等号.
    所以线段PQ长度的最小值为eq \f(2,3).故选C.
    4.在正三棱柱ABC­A1B1C1中,侧棱长为2,底面边长为1,M为BC的中点,eq \(C1N,\s\up6(→))=λeq \(NC,\s\up6(→)),且AB1⊥MN,则λ的值为________.
    解析:如图所示,取B1C1的中点P,连接MP,以eq \(MC,\s\up6(→)),eq \(MA,\s\up6(→)),eq \(MP,\s\up6(→))的方向为x,y,z轴正方向建立空间直角坐标系,
    因为底面边长为1,侧棱长为2,则Aeq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(\r(3),2),0)),B1(-eq \f(1,2),0,2),Ceq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0,0)),C1eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0,2)),
    M(0,0,0),设Neq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0,t)),
    因为eq \(C1N,\s\up6(→))=λeq \(NC,\s\up6(→)),所以Neq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0,\f(2,1+λ))),
    所以eq \(AB1,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2),-\f(\r(3),2),2)),eq \(MN,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),0,\f(2,1+λ))).
    又因为AB1⊥MN,所以eq \(AB1,\s\up6(→))·eq \(MN,\s\up6(→))=0.
    所以-eq \f(1,4)+eq \f(4,1+λ)=0,所以λ=15.
    答案:15
    5.在四棱锥P­ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点.
    (1)求证:EF⊥CD;
    (2)在平面PAD内是否存在一点G,使GF⊥平面PCB?若存在,求出点G坐标;若不存在,试说明理由.
    解:
    (1)证明:由题意知,DA,DC,DP两两垂直.
    如图,以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设AD=a,
    则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),Eeq \b\lc\(\rc\)(\a\vs4\al\c1(a,\f(a,2),0)),P(0,0,a),Feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,2),\f(a,2),\f(a,2))).
    eq \(EF,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(a,2),0,\f(a,2))),eq \(DC,\s\up6(→))=(0,a,0).
    因为eq \(EF,\s\up6(→))·eq \(DC,\s\up6(→))=0,
    所以eq \(EF,\s\up6(→))⊥eq \(DC,\s\up6(→)),从而得EF⊥CD.
    (2)存在.理由如下:假设存在满足条件的点G,
    设G(x,0,z),则eq \(FG,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(a,2),-\f(a,2),z-\f(a,2))),
    若使GF⊥平面PCB,则由
    eq \(FG,\s\up6(→))·eq \(CB,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(a,2),-\f(a,2),z-\f(a,2)))·(a,0,0)
    =aeq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(a,2)))=0,得x=eq \f(a,2);
    由eq \(FG,\s\up6(→))·eq \(CP,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(a,2),-\f(a,2),z-\f(a,2)))·(0,-a,a)=eq \f(a2,2)+aeq \b\lc\(\rc\)(\a\vs4\al\c1(z-\f(a,2)))=0,得z=0.
    所以G点坐标为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,2),0,0)),
    故存在满足条件的点G,且点G为AD的中点.
    6.如图,棱柱ABCD­A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.
    (1)求证:BD⊥AA1;
    (2)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.
    解:(1)证明:
    设BD与AC交于点O,则BD⊥AC,连接A1O,在△AA1O中,AA1=2,AO=1,∠A1AO=60°,
    所以A1O2=AAeq \\al(2,1)+AO2-2AA1·AOcs 60°=3,
    所以AO2+A1O2=AAeq \\al(2,1),
    所以A1O⊥AO.
    由于平面AA1C1C⊥平面ABCD,且平面AA1C1C∩平面ABCD=AC,A1O⊂平面AA1C1C,所以A1O⊥平面ABCD.以OB,OC,OA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(0,-1,0),B(eq \r(3),0,0),C(0,1,0),D(-eq \r(3),0,0),A1(0,0,eq \r(3)),C1(0,2,eq \r(3)).
    由于eq \(BD,\s\up6(→))=(-2eq \r(3),0,0),eq \(AA1,\s\up6(→))=(0,1,eq \r(3)),
    eq \(AA1,\s\up6(→))·eq \(BD,\s\up6(→))=0×(-2eq \r(3))+1×0+eq \r(3)×0=0,
    所以eq \(BD,\s\up6(→))⊥eq \(AA1,\s\up6(→)),即BD⊥AA1.
    (2)存在.理由如下:
    假设在直线CC1上存在点P,使BP∥平面DA1C1,
    设eq \(CP,\s\up6(→))=λeq \(CC1,\s\up6(→)),P(x,y,z),则(x,y-1,z)=λ(0,1,eq \r(3)).
    从而有P(0,1+λ,eq \r(3)λ),eq \(BP,\s\up6(→))=(-eq \r(3),1+λ,eq \r(3)λ).
    设平面DA1C1的法向量为n=(x2,y2,z2),
    则eq \b\lc\{(\a\vs4\al\c1(n⊥\(A1C1,\s\up6(→)),,n⊥\(DA1,\s\up6(→)),))
    又eq \(A1C1,\s\up6(→))=(0,2,0),eq \(DA1,\s\up6(→))=(eq \r(3),0,eq \r(3)),
    则eq \b\lc\{(\a\vs4\al\c1(2y2=0,,\r(3)x2+\r(3)z2=0,))
    取n=(1,0,-1),
    因为BP∥平面DA1C1,
    则n⊥eq \(BP,\s\up6(→)),即n·eq \(BP,\s\up6(→))=-eq \r(3)-eq \r(3)λ=0,得λ=-1,
    即点P在C1C的延长线上,且C1C=CP.
    位置关系
    向量表示
    直线l1,l2的方向向量分别为n1,n2
    l1∥l2
    n1∥n2⇔n1=λn2
    l1⊥l2
    n1⊥n2⇔n1·n2=0
    直线l的方向向量为n,平面α的法向量为m
    l∥α
    n⊥m⇔n·m=0
    l⊥α
    n∥m⇔n=λm
    平面α,β的法向量分别为n,m
    α∥β
    n∥m⇔n=λm
    α⊥β
    n⊥m⇔n·m=0
    三点P,A,B共线
    空间四点M,P,A,B共面
    eq \(PA,\s\up6(→))=λeq \(PB,\s\up6(→))
    eq \(MP,\s\up6(→))=xeq \(MA,\s\up6(→))+yeq \(MB,\s\up6(→))
    对空间任一点O,=eq \(OA,\s\up6(→))+teq \(AB,\s\up6(→))
    对空间任一点O,eq \(OP,\s\up6(→))=eq \(OM,\s\up6(→))+xeq \(MA,\s\up6(→))+yeq \(MB,\s\up6(→))
    对空间任一点O,eq \(OP,\s\up6(→))=xeq \(OA,\s\up6(→))+(1-x)eq \(OB,\s\up6(→))
    对空间任一点O,eq \(OP,\s\up6(→))=xeq \(OM,\s\up6(→))+yeq \(OA,\s\up6(→))+(1-x-y)eq \(OB,\s\up6(→))
    求夹角
    设向量a,b所成的角为θ,则cs θ=eq \f(a·b,|a||b|),进而可求两异面直线所成的角
    求长度(距离)
    运用公式|a|2=a·a,可使线段长度的计算问题转化为向量数量积的计算问题
    解决垂直问题
    利用a⊥b⇔a·b=0(a≠0,b≠0),可将垂直问题转化为向量数量积的计算问题
    相关学案

    2023届高考一轮复习讲义(理科)第八章 立体几何 第7讲 立体几何中的向量方法学案: 这是一份2023届高考一轮复习讲义(理科)第八章 立体几何 第7讲 立体几何中的向量方法学案,共27页。学案主要包含了知识梳理,习题改编等内容,欢迎下载使用。

    2023届高考一轮复习讲义(理科)第八章 立体几何 第4讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第八章 立体几何 第4讲 高效演练分层突破学案,共9页。

    2023届高考一轮复习讲义(理科)第八章 立体几何 第3讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第八章 立体几何 第3讲 高效演练分层突破学案,共9页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:0份资料
    • 充值学贝下载 90%的用户选择 本单免费
    • 扫码直接下载
    选择教习网的 4 个理由
    • 更专业

      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿

    • 更丰富

      涵盖课件/教案/试卷/素材等各种教学资源;500万+优选资源 ⽇更新5000+

    • 更便捷

      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤

    • 真低价

      超⾼性价⽐, 让优质资源普惠更多师⽣

    开票申请 联系客服
    本次下载需要:0学贝 0学贝 账户剩余:0学贝
    本次下载需要:0学贝 原价:0学贝 账户剩余:0学贝
    了解VIP特权
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送

        扫码支付后直接下载

        0元

        扫码支付后直接下载

        使用学贝下载资料比扫码直接下载优惠50%
        充值学贝下载,本次下载免费
        了解VIP特权
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付(支持花呗)

        到账0学贝
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付 (支持花呗)

          下载成功

          Ctrl + Shift + J 查看文件保存位置

          若下载不成功,可重新下载,或查看 资料下载帮助

          本资源来自成套资源

          更多精品资料

          正在打包资料,请稍候…

          预计需要约10秒钟,请勿关闭页面

          服务器繁忙,打包失败

          请联系右侧的在线客服解决

          单次下载文件已超2GB,请分批下载

          请单份下载或分批下载

          支付后60天内可免费重复下载

          我知道了
          正在提交订单

          欢迎来到教习网

          • 900万优选资源,让备课更轻松
          • 600万优选试题,支持自由组卷
          • 高质量可编辑,日均更新2000+
          • 百万教师选择,专业更值得信赖
          微信扫码注册
          qrcode
          二维码已过期
          刷新

          微信扫码,快速注册

          还可免费领教师专享福利「樊登读书VIP」

          手机号注册
          手机号码

          手机号格式错误

          手机验证码 获取验证码

          手机验证码已经成功发送,5分钟内有效

          设置密码

          6-20个字符,数字、字母或符号

          注册即视为同意教习网「注册协议」「隐私条款」
          QQ注册
          手机号注册
          微信注册

          注册成功

          下载确认

          下载需要:0 张下载券

          账户可用:0 张下载券

          立即下载

          如何免费获得下载券?

          加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

          即将下载

          2023届高考一轮复习讲义(理科)第八章 立体几何 第6讲 空间向量及其运算学案

          该资料来自成套资源,打包下载更省心

          [共10份]
          浏览全套
            立即下载(共1份)
            返回
            顶部