搜索
    上传资料 赚现金
    4.1.2 无理指数幂及其运算 导学案(1)
    立即下载
    加入资料篮
    4.1.2 无理指数幂及其运算 导学案(1)01
    4.1.2 无理指数幂及其运算 导学案(1)02
    4.1.2 无理指数幂及其运算 导学案(1)03
    还剩4页未读, 继续阅读
    下载需要5学贝
    使用下载券免费下载
    加入资料篮
    立即下载

    苏教版 (2019)必修 第一册4.1 指数学案及答案

    展开
    这是一份苏教版 (2019)必修 第一册4.1 指数学案及答案,共7页。

                    第四章  指数函数与对数函数

                    4.1.1  n次方根与分数指数幂

    1. 理解分数指数幂的概念,掌握分数指数幂的运算法则,会根据根式和分数指数幂的关系和分数指数幂的运算法则进行计算分数指数幂;

    2.了解可以由有理数指数幂无限逼近无理数指数幂。

    重点:分数指数幂和无理指数幂的概念;

    难点:根式与分数指数幂的互化;指数幂的运算性质;

    1.分数指数幂的意义

    分数指数幂

    正分数指数幂

    规定:a———— (a>0mnN*,且n>1)

    负分数指数幂

    规定:a————(a>0mnN*,且n>1)

    0的分数指数幂

    0的正分数指数幂等于0

    0的负分数指数幂没有意义.

    2.有理数指数幂的运算性质

    (1)arasars(a>0rsQ) (2)(ar)sars(a>0rsQ)

    (3)(ab)rarbr(a>0b>0rQ)

    小试牛刀

    1.思考辨析

    (1)0的任何指数幂都等于0.(  )    (2)5.(  )

    (3)分数指数幂与根式可以相互转化,如a.(  )

    24等于(  )

    A25       B.   C.   D.

    3.已知a>0,则a等于(  )

    A.  B  C.   D.-

    4(m)4(1)0________.

    (二)、探索新知

    无理数指数幂:一般地,无理数指数幂aα(a>0α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂。

    无理数指数幂:一般地,无理数指数幂aα(a>0α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂;

    观察下表:的是 否表示一个确定的实数?

    的过剩近似值

      的近似值

    1.5

    11.180 339 89

    1.42

    9.829 635 328

    1.415

    9.750 851 808

    1.414 3

    9.739 872 62

    1.414 22

    9.738 618 643

    1.414 214

    9.738 524 602

    1.414 213 6

    9.738 518 332

    1.414 213 57

    9.738 517 862

    1.414 213 563

    9.738 517 752

    由上可以看出:    可以由的不足近似值和过剩近似值进行无限逼近。

    (三)典例解析

    题型1  根式与分数指数幂的互化

    1 将下列根式化成分数指数幂的形式:

    (1)(a>0)(2)(3)(b>0).

    跟踪训练1.将下列根式与分数指数幂进行互化.

    (1)a3·(2)(a>0b>0)

    题型2利用分数指数幂的运算性质化简求解

     

    2、化简求值

    跟踪训练2(1)计算:0.0640[(2)3]160.75|0.01|

    (2)化简:÷(a>0)

    题型3 指数幂运算中的条件求值

    1.22存在怎样的等量关系?

    提示:224.

    2.已知的值,如何求a的值?反之呢?

    提示:设m,则两边平方得am22;反之若设an,则nm22m..

    3已知aa4,求下列各式的值:

    (1)aa1(2)a2a2.

    母题探究:1.在本例条件不变的条件下,求aa1的值.

    2.在本例条件不变的条件下,求a2a2的值.

    1.下列运算结果中,正确的是(  )

    Aa2a3a5               B(a2)3(a3)2

    C(1)01           D(a2)3a6

    2把根式a化成分数指数幂是(  )

    A(a)   B.-(a)     C.-a     Da

    4.若10m2,10n3,则103mn________.

    1.利用分数指数幂进行根式运算时,其顺序是先把根式化成分数指数幂或把分母的  指数化成负指数,再根据同底数幂相乘的法则运算。

    2.指数幂运算性质

     

    参考答案:

    一、知识梳理

    小试牛刀

    1.[答案] (1)× (2)× (3)×           2.B [4,故选B.]

    3.B [a.]             4.m21 [(m)4(1)0m21.]

    二、学习过程

    跟踪训练1

    跟踪训练2

    3.[] (1)aa4两边平方,得aa1216,故aa114.

    (2)aa114两边平方,得a2a22196,故a2a2194.

    [] 1由上题可知,a2a2(aa1)(aa1)±8×14±112.[] 2aa1t,则两边平方得a2a2t22

    t22194,即t2192t±8,即aa1±8.

    三、达标检测

    1.[答案]A [a2a3a23a5(a2)3=-a6≠(a3)2a6(1)01,若成立,需要满足a≠1

    故选A.]

    2.[答案]D [由题意可知a≥0,故排除ABC选项,选D.]

    3.答案

    4.[答案] [10m2103m238,又10n3,所以103mn.]

    相关学案

    高中数学人教A版 (2019)必修 第一册4.1 指数导学案: 这是一份高中数学人教A版 (2019)必修 第一册4.1 指数导学案,共5页。

    高中数学人教A版 (2019)必修 第一册4.1 指数导学案及答案: 这是一份高中数学人教A版 (2019)必修 第一册4.1 指数导学案及答案,共5页。

    2021学年4.1 实数指数幂和幂函数学案设计: 这是一份2021学年4.1 实数指数幂和幂函数学案设计,共10页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:0份资料
    • 充值学贝下载 90%的用户选择 本单免费
    • 扫码直接下载
    选择教习网的 4 个理由
    • 更专业

      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿

    • 更丰富

      涵盖课件/教案/试卷/素材等各种教学资源;500万+优选资源 ⽇更新5000+

    • 更便捷

      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤

    • 真低价

      超⾼性价⽐, 让优质资源普惠更多师⽣

    开票申请 联系客服
    本次下载需要:0学贝 0学贝 账户剩余:0学贝
    本次下载需要:0学贝 原价:0学贝 账户剩余:0学贝
    了解VIP特权
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送

        扫码支付后直接下载

        0元

        扫码支付后直接下载

        使用学贝下载资料比扫码直接下载优惠50%
        充值学贝下载,本次下载免费
        了解VIP特权
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付(支持花呗)

        到账0学贝
        • 微信
        • 支付宝

        微信扫码支付

        支付宝扫码支付 (支持花呗)

          下载成功

          Ctrl + Shift + J 查看文件保存位置

          若下载不成功,可重新下载,或查看 资料下载帮助

          本资源来自成套资源

          更多精品资料

          正在打包资料,请稍候…

          预计需要约10秒钟,请勿关闭页面

          服务器繁忙,打包失败

          请联系右侧的在线客服解决

          单次下载文件已超2GB,请分批下载

          请单份下载或分批下载

          支付后60天内可免费重复下载

          我知道了
          正在提交订单

          欢迎来到教习网

          • 900万优选资源,让备课更轻松
          • 600万优选试题,支持自由组卷
          • 高质量可编辑,日均更新2000+
          • 百万教师选择,专业更值得信赖
          微信扫码注册
          qrcode
          二维码已过期
          刷新

          微信扫码,快速注册

          还可免费领教师专享福利「樊登读书VIP」

          手机号注册
          手机号码

          手机号格式错误

          手机验证码 获取验证码

          手机验证码已经成功发送,5分钟内有效

          设置密码

          6-20个字符,数字、字母或符号

          注册即视为同意教习网「注册协议」「隐私条款」
          QQ注册
          手机号注册
          微信注册

          注册成功

          下载确认

          下载需要:0 张下载券

          账户可用:0 张下载券

          立即下载

          如何免费获得下载券?

          加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

          返回
          顶部